IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v16y2013i2p193-212.html
   My bibliography  Save this article

Architecting technology transitions: A sustainability‐oriented sociotechnical approach

Author

Listed:
  • Kim Davis
  • Thomas Mazzuchi
  • Shahram Sarkani

Abstract

Achieving sustainability involves complex processes of technology, people, institutions, and the environment. The sustainability challenge requires a combination of social, political, and technological efforts. This paper discusses processes for technological change in order to meet the sustainability challenge. These complex processes are found to be a suitable application for systems engineering and for systems architecture in particular. Based on a thorough review of the literature, an architecture framework is developed to support management of portfolios of sustainable technology projects. This architecture framework is validated through a case study process, providing enhancements and lessons learned. The full architecture framework construct and associated proposed implementation approaches are presented, demonstrating the need for and applicability of such systems engineering approaches to achieve sustainability. Lessons learned from case studies and development of representative architectures are also described. ©2012 Wiley Periodicals, Inc. Syst Eng 16

Suggested Citation

  • Kim Davis & Thomas Mazzuchi & Shahram Sarkani, 2013. "Architecting technology transitions: A sustainability‐oriented sociotechnical approach," Systems Engineering, John Wiley & Sons, vol. 16(2), pages 193-212, June.
  • Handle: RePEc:wly:syseng:v:16:y:2013:i:2:p:193-212
    DOI: 10.1002/sys.21226
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21226
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    2. Carlos A. Osorio & Dov Dori & Joseph Sussman, 2011. "COIM: An object‐process based method for analyzing architectures of complex, interconnected, large‐scale socio‐technical systems," Systems Engineering, John Wiley & Sons, vol. 14(4), pages 364-382, December.
    3. Tyson R. Browning, 2009. "The many views of a process: Toward a process architecture framework for product development processes," Systems Engineering, John Wiley & Sons, vol. 12(1), pages 69-90, March.
    4. Raven, Rob, 2007. "Niche accumulation and hybridisation strategies in transition processes towards a sustainable energy system: An assessment of differences and pitfalls," Energy Policy, Elsevier, vol. 35(4), pages 2390-2400, April.
    5. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    6. Nelson, Richard R. & Winter, Sidney G., 1993. "In search of useful theory of innovation," Research Policy, Elsevier, vol. 22(2), pages 108-108, April.
    7. Jason E. Bartolomei & Daniel E. Hastings & Richard de Neufville & Donna H. Rhodes, 2012. "Engineering Systems Multiple‐Domain Matrix: An organizing framework for modeling large‐scale complex systems," Systems Engineering, John Wiley & Sons, vol. 15(1), pages 41-61, March.
    8. Tod M. Schuck, 2010. "An extended enterprise architecture for a network‐enabled, effects‐based approach for national park protection," Systems Engineering, John Wiley & Sons, vol. 13(3), pages 209-216, September.
    9. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    10. Andrew P. Sage & Charles L. Lynch, 1998. "Systems integration and architecting: An overview of principles, practices, and perspectives," Systems Engineering, John Wiley & Sons, vol. 1(3), pages 176-227.
    11. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    12. Frank W. Geels, 2005. "Technological Transitions and System Innovations," Books, Edward Elgar Publishing, number 3576.
    13. Jason K. Levy & Keith W. Hipel & D. Marc Kilgour, 1998. "Systems for sustainable development: Challenges and opportunities," Systems Engineering, John Wiley & Sons, vol. 1(1), pages 31-43.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genus, Audley & Coles, Anne-Marie, 2008. "Rethinking the multi-level perspective of technological transitions," Research Policy, Elsevier, vol. 37(9), pages 1436-1445, October.
    2. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    3. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    4. Kuokkanen, A. & Nurmi, A. & Mikkilä, M. & Kuisma, M. & Kahiluoto, H. & Linnanen, L., 2018. "Agency in regime destabilization through the selection environment: The Finnish food system’s sustainability transition," Research Policy, Elsevier, vol. 47(8), pages 1513-1522.
    5. Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
    6. Walrave, Bob & Talmar, Madis & Podoynitsyna, Ksenia S. & Romme, A. Georges L. & Verbong, Geert P.J., 2018. "A multi-level perspective on innovation ecosystems for path-breaking innovation," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 103-113.
    7. Dijk, Marc & Orsato, Renato J. & Kemp, René, 2015. "Towards a regime-based typology of market evolution," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 276-289.
    8. Pesch, Udo, 2015. "Tracing discursive space: Agency and change in sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 379-388.
    9. Chang, Rui-Dong & Zuo, Jian & Zhao, Zhen-Yu & Zillante, George & Gan, Xiao-Long & Soebarto, Veronica, 2017. "Evolving theories of sustainability and firms: History, future directions and implications for renewable energy research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 48-56.
    10. Kerstin Hötte, 2021. "Skill transferability and the stability of transition pathways- A learning-based explanation for patterns of diffusion," Journal of Evolutionary Economics, Springer, vol. 31(3), pages 959-993, July.
    11. James Meadowcroft, 2009. "What about the politics? Sustainable development, transition management, and long term energy transitions," Policy Sciences, Springer;Society of Policy Sciences, vol. 42(4), pages 323-340, November.
    12. Raven, Rob P.J.M., 2006. "Towards alternative trajectories? Reconfigurations in the Dutch electricity regime," Research Policy, Elsevier, vol. 35(4), pages 581-595, May.
    13. Monk, Alexander & Perkins, Richard, 2020. "What explains the emergence and diffusion of green bonds?," Energy Policy, Elsevier, vol. 145(C).
    14. Lachman, Daniël A., 2013. "A survey and review of approaches to study transitions," Energy Policy, Elsevier, vol. 58(C), pages 269-276.
    15. Lillian Hansen & Hilde Bjørkhaug, 2017. "Visions and Expectations for the Norwegian Bioeconomy," Sustainability, MDPI, vol. 9(3), pages 1-17, February.
    16. Batinge, Benjamin & Musango, Josephine Kaviti & Brent, Alan C., 2019. "Sustainable energy transition framework for unmet electricity markets," Energy Policy, Elsevier, vol. 129(C), pages 1090-1099.
    17. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    18. Bolton, Ronan & Foxon, Timothy J., 2015. "Infrastructure transformation as a socio-technical process — Implications for the governance of energy distribution networks in the UK," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 538-550.
    19. Garud, Raghu & Gehman, Joel, 2012. "Metatheoretical perspectives on sustainability journeys: Evolutionary, relational and durational," Research Policy, Elsevier, vol. 41(6), pages 980-995.
    20. Colvin, John & Blackmore, Chris & Chimbuya, Sam & Collins, Kevin & Dent, Mark & Goss, John & Ison, Ray & Roggero, Pier Paolo & Seddaiu, Giovanna, 2014. "In search of systemic innovation for sustainable development: A design praxis emerging from a decade of social learning inquiry," Research Policy, Elsevier, vol. 43(4), pages 760-771.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:16:y:2013:i:2:p:193-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.