Author
Listed:
- Marcelo Furlan
- Pedro Augusto Bertucci Lima
- Gilberto Dias Paião Junior
- Enzo Barberio Mariano
- Sara Margarida Moreno Pires
Abstract
Despite efforts towards the accomplishment of the UN 2030 Agenda, the challenges of burgeoning populations, income inequality, difficulty in accessing basic services, among others, remain in several cities around the world. New approaches to measure and assess the sustainability of cities can support the development of actions to improve the different dimensions of sustainability. The research aims to propose an urban sustainability index and a maturity model to evaluate the sustainability of cities and monitor it over time. To achieve this objective, a maturity model was developed based on three different techniques: Data Envelopment Analysis, Artificial Neural Networks, and Analysis of Variance. The proposed index and the maturity model were applied to evaluate a sample of 504 Brazilian cities. The main results observed are: (a) the presence of five distinct levels of city performance (maturity), grouped via machine learning and validated via inferential statistics; (b) no city was considered fully sustainable and only 4.76% of the cities studies are at the highest level of urban sustainability maturity; (c) from a joint application of the three quantitative techniques and specific targets for each indicator could be identified, and the performance of cities classified over time. Based on the results, it is hoped that policy makers will have more objective and standardized tools to collect useful information and be able to reinforce critical strategies or chart new policies towards sustainable urban development. It is also hoped that the joint application of the techniques can shed light on new urban sustainability assessment models.
Suggested Citation
Marcelo Furlan & Pedro Augusto Bertucci Lima & Gilberto Dias Paião Junior & Enzo Barberio Mariano & Sara Margarida Moreno Pires, 2025.
"Proposing a composite index and maturity model for urban sustainability in the Brazilian context: A machine learning and data envelopment analysis approach,"
Sustainable Development, John Wiley & Sons, Ltd., vol. 33(1), pages 251-269, February.
Handle:
RePEc:wly:sustdv:v:33:y:2025:i:1:p:251-269
DOI: 10.1002/sd.3120
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:33:y:2025:i:1:p:251-269. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.