IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v33y2013i9p1620-1635.html
   My bibliography  Save this article

Risk‐Based Input‐Output Analysis of Influenza Epidemic Consequences on Interdependent Workforce Sectors

Author

Listed:
  • Joost R. Santos
  • Larissa May
  • Amine El Haimar

Abstract

Outbreaks of contagious diseases underscore the ever‐looming threat of new epidemics. Compared to other disasters that inflict physical damage to infrastructure systems, epidemics can have more devastating and prolonged impacts on the population. This article investigates the interdependent economic and productivity risks resulting from epidemic‐induced workforce absenteeism. In particular, we develop a dynamic input‐output model capable of generating sector‐disaggregated economic losses based on different magnitudes of workforce disruptions. An ex post analysis of the 2009 H1N1 pandemic in the national capital region (NCR) reveals the distribution of consequences across different economic sectors. Consequences are categorized into two metrics: (i) economic loss, which measures the magnitude of monetary losses incurred in each sector, and (ii) inoperability, which measures the normalized monetary losses incurred in each sector relative to the total economic output of that sector. For a simulated mild pandemic scenario in NCR, two distinct rankings are generated using the economic loss and inoperability metrics. Results indicate that the majority of the critical sectors ranked according to the economic loss metric comprise of sectors that contribute the most to the NCR's gross domestic product (e.g., federal government enterprises). In contrast, the majority of the critical sectors generated by the inoperability metric include sectors that are involved with epidemic management (e.g., hospitals). Hence, prioritizing sectors for recovery necessitates consideration of the balance between economic loss, inoperability, and other objectives. Although applied specifically to the NCR, the proposed methodology can be customized for other regions.

Suggested Citation

  • Joost R. Santos & Larissa May & Amine El Haimar, 2013. "Risk‐Based Input‐Output Analysis of Influenza Epidemic Consequences on Interdependent Workforce Sectors," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1620-1635, September.
  • Handle: RePEc:wly:riskan:v:33:y:2013:i:9:p:1620-1635
    DOI: 10.1111/risa.12002
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12002
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joost R. Santos & Yacov Y. Haimes & Chenyang Lian, 2007. "A Framework for Linking Cybersecurity Metrics to the Modeling of Macroeconomic Interdependencies," Risk Analysis, John Wiley & Sons, vol. 27(5), pages 1283-1297, October.
    2. Joanna Resurreccion & Joost R. Santos, 2012. "Multiobjective Prioritization Methodology and Decision Support System for Evaluating Inventory Enhancement Strategies for Disrupted Interdependent Sectors," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1673-1692, October.
    3. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    4. Pu Jiang & Yacov Y. Haimes, 2004. "Risk Management for Leontief‐Based Interdependent Systems," Risk Analysis, John Wiley & Sons, vol. 24(5), pages 1215-1229, October.
    5. Smith, Richard D. & Keogh-Brown, Marcus R. & Barnett, Tony, 2011. "Estimating the economic impact of pandemic influenza: An application of the computable general equilibrium model to the UK," Social Science & Medicine, Elsevier, vol. 73(2), pages 235-244, July.
    6. Barker, Kash & Haimes, Yacov Y., 2009. "Assessing uncertainty in extreme events: Applications to risk-based decision making in interdependent infrastructure sectors," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 819-829.
    7. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    8. Barker, Kash & Santos, Joost R., 2010. "Measuring the efficacy of inventory with a dynamic input-output model," International Journal of Production Economics, Elsevier, vol. 126(1), pages 130-143, July.
    9. Marcus Keogh-Brown & Richard Smith & John Edmunds & Philippe Beutels, 2010. "The macroeconomic impact of pandemic influenza: estimates from models of the United Kingdom, France, Belgium and The Netherlands," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(6), pages 543-554, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R Maria del Rio-Chanona & Penny Mealy & Anton Pichler & François Lafond & J Doyne Farmer, 2020. "Supply and demand shocks in the COVID-19 pandemic: an industry and occupation perspective," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 36(Supplemen), pages 94-137.
    2. Giammetti, Raffaele & Papi, Luca & Teobaldelli, Désirée & Ticchi, Davide, 2022. "The optimality of age-based lockdown policies," Journal of Policy Modeling, Elsevier, vol. 44(3), pages 722-738.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joost R. Santos & Lucia Castro Herrera & Krista Danielle S. Yu & Sheree Ann T. Pagsuyoin & Raymond R. Tan, 2014. "State of the Art in Risk Analysis of Workforce Criticality Influencing Disaster Preparedness for Interdependent Systems," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1056-1068, June.
    2. Krista Danielle S. Yu & Raymond R. Tan & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos, 2014. "A Vulnerability Index For Post-Disaster Key Sector Prioritization," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 81-97, March.
    3. Pant, Raghav & Barker, Kash & Zobel, Christopher W., 2014. "Static and dynamic metrics of economic resilience for interdependent infrastructure and industry sectors," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 92-102.
    4. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    5. Jeesang Jung & Joost R. Santos & Yacov Y. Haimes, 2009. "International Trade Inoperability Input‐Output Model (IT‐IIM): Theory and Application," Risk Analysis, John Wiley & Sons, vol. 29(1), pages 137-154, January.
    6. Joanna Resurreccion & Joost Santos, 2013. "Uncertainty modeling of hurricane-based disruptions to interdependent economic and infrastructure systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1497-1518, December.
    7. Joost R. Santos, 2006. "Inoperability input‐output modeling of disruptions to interdependent economic systems," Systems Engineering, John Wiley & Sons, vol. 9(1), pages 20-34, March.
    8. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    9. Jan Oosterhaven, 2017. "On the limited usability of the inoperability IO model," Economic Systems Research, Taylor & Francis Journals, vol. 29(3), pages 452-461, July.
    10. Ilan Noy & Tomáš Uher, 2022. "Economic consequences of pre-COVID-19 epidemics: a literature review," Chapters, in: Mark Skidmore (ed.), Handbook on the Economics of Disasters, chapter 7, pages 117-133, Edward Elgar Publishing.
    11. David E. Bloom & Michael Kuhn & Klaus Prettner, 2022. "Modern Infectious Diseases: Macroeconomic Impacts and Policy Responses," Journal of Economic Literature, American Economic Association, vol. 60(1), pages 85-131, March.
    12. Paul, Jomon A. & Wang, Xinfang & Bagchi, Aniruddha, 2024. "Lives or livelihoods: A configurational perspective of COVID-19 policies," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    13. Selerio, Egberto & Maglasang, Renan, 2021. "Minimizing production loss consequent to disasters using a subsidy optimization model: a pandemic case," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 112-124.
    14. Karlsson Martin & Matvieiev Mykhailo & Obrizan Maksym, 2023. "The Macroeconomic Impact of the 1918–19 Influenza Pandemic in Sweden," The B.E. Journal of Macroeconomics, De Gruyter, vol. 23(2), pages 637-675, June.
    15. B. Lahcen & J. Brusselaers & K. Vrancken & Y. Dams & C. Silva Paes & J. Eyckmans & S. Rousseau, 2020. "Green Recovery Policies for the COVID-19 Crisis: Modelling the Impact on the Economy and Greenhouse Gas Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 731-750, August.
    16. Itamar Megiddo & Dusan Drabik & Tim Bedford & Alec Morton & Justus Wesseler & Ramanan Laxminarayan, 2019. "Investing in antibiotics to alleviate future catastrophic outcomes: What is the value of having an effective antibiotic to mitigate pandemic influenza?," Health Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 556-571, April.
    17. Jian Jin & Haoran Zhou, 2023. "A Demand-Side Inoperability Input–Output Model for Strategic Risk Management: Insight from the COVID-19 Outbreak in Shanghai, China," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    18. Luis Pedauga & Francisco Sáez & Blanca L. Delgado-Márquez, 2022. "Macroeconomic lockdown and SMEs: the impact of the COVID-19 pandemic in Spain," Small Business Economics, Springer, vol. 58(2), pages 665-688, February.
    19. Muhammad Abdullah Khalid & Yousaf Ali, 2020. "Economic impact assessment of natural disaster with multi-criteria decision making for interdependent infrastructures," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7287-7311, December.
    20. Botelho, Vinícius, 2019. "Estimating the economic impacts of power supply interruptions," Energy Economics, Elsevier, vol. 80(C), pages 983-994.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:33:y:2013:i:9:p:1620-1635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.