IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v26y2006i2p311-335.html
   My bibliography  Save this article

Reliability Analysis Based on the Losses from Failures

Author

Listed:
  • M. T. Todinov

Abstract

The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early‐life failures has also been developed. For a specified time interval, the expected losses from early‐life failures are a sum of the products of the expected number of failures in the specified time intervals covering the early‐life failures region and the expected losses given failure characterizing the corresponding time intervals. For complex systems whose components are not logically arranged in series, discrete simulation algorithms and software have been created for determining the losses from failures in terms of expected lost production time, cost of intervention, and cost of replacement. Different system topologies are assessed to determine the effect of modifications of the system topology on the expected losses from failures. It is argued that the reliability allocation in a production system should be done to maximize the profit/value associated with the system. Consequently, a method for setting reliability requirements and reliability allocation maximizing the profit by minimizing the total cost has been developed. Reliability allocation that maximizes the profit in case of a system consisting of blocks arranged in series is achieved by determining for each block individually the reliabilities of the components in the block that minimize the sum of the capital, operation costs, and the expected losses from failures. A Monte Carlo simulation based net present value (NPV) cash‐flow model has also been proposed, which has significant advantages to cash‐flow models based on the expected value of the losses from failures per time interval. Unlike these models, the proposed model has the capability to reveal the variation of the NPV due to different number of failures occurring during a specified time interval (e.g., during one year). The model also permits tracking the impact of the distribution pattern of failure occurrences and the time dependence of the losses from failures.

Suggested Citation

  • M. T. Todinov, 2006. "Reliability Analysis Based on the Losses from Failures," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 311-335, April.
  • Handle: RePEc:wly:riskan:v:26:y:2006:i:2:p:311-335
    DOI: 10.1111/j.1539-6924.2006.00740.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2006.00740.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2006.00740.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrina S. Dimitrova & Vladimir K. Kaishev & Shouqi Zhao, 2015. "Modeling Finite‐Time Failure Probabilities in Risk Analysis Applications," Risk Analysis, John Wiley & Sons, vol. 35(10), pages 1919-1939, October.
    2. Navid Ghaffarzadegan, 2008. "How a System Backfires: Dynamics of Redundancy Problems in Security," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1669-1687, December.
    3. Christoph M. Rheinberger & Michael Bründl & Jakob Rhyner, 2009. "Dealing with the White Death: Avalanche Risk Management for Traffic Routes," Risk Analysis, John Wiley & Sons, vol. 29(1), pages 76-94, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:26:y:2006:i:2:p:311-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.