IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v25y2005i5p1161-1170.html
   My bibliography  Save this article

Forecasting Spanish Natural Life Expectancy

Author

Listed:
  • Montserrat Guillen
  • Antoni Vidiella‐i‐Anguera

Abstract

Knowledge of trends in life expectancy is of major importance for policy planning. It is also a key indicator for assessing future development of life insurance products, substantiality of existing retirement schemes, and long‐term care for the elderly. This article examines the feasibility of decomposing age‐gender‐specific accidental and natural mortality rates. We study this decomposition by using the Lee and Carter model. In particular, we fit the Poisson log‐bilinear version of this model proposed by Wilmoth and Brouhns et al. to historical (1975–1998) Spanish mortality rates. In addition, by using the model introduced by Wilmoth and Valkonen we analyze mortality‐gender differentials for accidental and natural rates. We present aggregated life expectancy forecasts compared with those constructed using nondecomposed mortality rates.

Suggested Citation

  • Montserrat Guillen & Antoni Vidiella‐i‐Anguera, 2005. "Forecasting Spanish Natural Life Expectancy," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1161-1170, October.
  • Handle: RePEc:wly:riskan:v:25:y:2005:i:5:p:1161-1170
    DOI: 10.1111/j.1539-6924.2005.00671.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2005.00671.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2005.00671.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Felipe, Angie & Guillen, Montserrat & Nielsen, Jens Perch, 2001. "Longevity studies based on kernel hazard estimation," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 191-204, April.
    2. Renshaw, A. E. & Haberman, S., 2003. "On the forecasting of mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 379-401, July.
    3. Arthur Renshaw & Steven Haberman, 2003. "Lee–Carter mortality forecasting: a parallel generalized linear modelling approach for England and Wales mortality projections," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 119-137, January.
    4. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, October.
    5. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabitti, Giovanni & Borgonovo, Emanuele, 2020. "Is mortality or interest rate the most important risk in annuity models? A comparison of sensitivity analysis methods," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 48-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    2. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.
    3. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
    4. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    5. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    6. Ekheden, Erland & Hössjer, Ola, 2015. "Multivariate time series modeling, estimation and prediction of mortalities," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 156-171.
    7. Pitacco, Ermanno, 2004. "Survival models in a dynamic context: a survey," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 279-298, October.
    8. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    9. Jorge Bravo & Carlos Pereira da Silva, 2012. "Prospective Lifetables: Life Insurance Pricing and Hedging in a Stochastic Mortality Environment," CEFAGE-UE Working Papers 2012_01, University of Evora, CEFAGE-UE (Portugal).
    10. Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
    11. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    12. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    13. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    14. D’Amato, Valeria & Haberman, Steven & Piscopo, Gabriella & Russolillo, Maria, 2012. "Modelling dependent data for longevity projections," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 694-701.
    15. Heather Booth & Rob J Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Monash Econometrics and Business Statistics Working Papers 13/06, Monash University, Department of Econometrics and Business Statistics.
    16. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    17. Renshaw, A.E. & Haberman, S., 2008. "On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 797-816, April.
    18. Ka Kin Lam & Bo Wang, 2021. "Robust Non-Parametric Mortality and Fertility Modelling and Forecasting: Gaussian Process Regression Approaches," Forecasting, MDPI, vol. 3(1), pages 1-21, March.
    19. Annamaria Olivieri & Ermanno Pitacco, 2022. "Time Restrictions on Life Annuity Benefits: Portfolio Risk Profiles," Risks, MDPI, vol. 10(8), pages 1-18, August.
    20. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:25:y:2005:i:5:p:1161-1170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.