IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v22y2002i5p853-860.html
   My bibliography  Save this article

Life Cycle Impact Assessment: A Challenge for Risk Analysts

Author

Listed:
  • H. Scott Matthews
  • Lester Lave
  • Heather MacLean

Abstract

Modern technology, together with an advanced economy, can provide a good or service in myriad ways, giving us choices on what to produce and how to produce it. To make those choices more intelligently, society needs to know not only the market price of each alternative, but the associated health and environmental consequences. A fair comparison requires evaluating the consequences across the whole “life cycle”—from the extraction of raw materials and processing to manufacture/construction, use, and end‐of‐life—of each alternative. Focusing on only one stage (e.g., manufacture) of the life cycle is often misleading. Unfortunately, analysts and researchers still have only rudimentary tools to quantify the materials and energy inputs and the resulting damage to health and the environment. Life cycle assessment (LCA) provides an overall framework for identifying and evaluating these implications. Since the 1960s, considerable progress has been made in developing methods for LCA, especially in characterizing, qualitatively and quantitatively, environmental discharges. However, few of these analyses have attempted to assess the quantitative impact on the environment and health of material inputs and environmental discharges. Risk analysis and LCA are connected closely. While risk analysis has characterized and quantified the health risks of exposure to a toxicant, the policy implications have not been clear. Inferring that an occupational or public health exposure carries a nontrivial risk is only the first step in formulating a policy response. A broader framework, including LCA, is needed to see which response is likely to lower the risk without creating high risks elsewhere. Even more important, LCA has floundered at the stage of translating an inventory of environmental discharges into estimates of impact on health and the environment. Without the impact analysis, policymakers must revert to some simple rule, such as that all discharges, regardless of which chemical, which medium, and where they are discharged, are equally toxic. Thus, risk analysts should seek LCA guidance in translating a risk analysis into policy conclusions or even advice to those at risk. LCA needs the help of RA to go beyond simplistic assumptions about the implications of a discharge inventory. We demonstrate the need and rationale for LCA, present a brief history of LCA, present examples of the application of this tool, note the limitations of LCA models, and present several methods for incorporating risk assessment into LCA. However, we warn the reader not to expect too much. A comprehensive comparison of the health and environmental implications of alternatives is beyond the state of the art. LCA is currently not able to provide risk analysts with detailed information on the chemical form and location of the environmental discharges that would allow detailed estimation of the risks to individuals due to toxicants. For example, a challenge for risk analysts is to estimate health and other risks where the location and chemical speciation are not characterized precisely. Providing valuable information to decisionmakers requires advances in both LCA and risk analysis. These two disciplines should be closely linked, since each has much to contribute to the other.

Suggested Citation

  • H. Scott Matthews & Lester Lave & Heather MacLean, 2002. "Life Cycle Impact Assessment: A Challenge for Risk Analysts," Risk Analysis, John Wiley & Sons, vol. 22(5), pages 853-860, October.
  • Handle: RePEc:wly:riskan:v:22:y:2002:i:5:p:853-860
    DOI: 10.1111/1539-6924.00256
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1539-6924.00256
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1539-6924.00256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Giancarlo Raschio & Sergiy Smetana & Christian Contreras & Volker Heinz & Alexander Mathys, 2018. "Spatio‐Temporal Differentiation of Life Cycle Assessment Results for Average Perennial Crop Farm: A Case Study of Peruvian Cocoa Progression and Deforestation Issues," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1378-1388, December.
    3. Rajive Dhingra & Sasikumar Naidu & Girish Upreti & Rapinder Sawhney, 2010. "Sustainable Nanotechnology: Through Green Methods and Life-Cycle Thinking," Sustainability, MDPI, vol. 2(10), pages 1-16, October.
    4. Jaller, Miguel & Harvey, John T. & Saremi, Sogol & Ambrose, Hanjiro & Butt, Ali A., 2018. "Development of a Freight System Conceptualization and Impact Assessment (Fre‐SCANDIA) Framework," Institute of Transportation Studies, Working Paper Series qt05g8p7tn, Institute of Transportation Studies, UC Davis.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:22:y:2002:i:5:p:853-860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.