IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v21y2001i5p843-843.html
   My bibliography  Save this article

Air Pollution and Mortality: Quantification and Valuation of Years of Life Lost

Author

Listed:
  • Ingemar Leksell
  • Ari Rabl

Abstract

To analyze the loss of life expectancy (LLE) due to air pollution and the associated social cost, a dynamic model was developed that took into account the decrease of risk after the termination of an exposure to pollution. A key parameter was the time constant for the decrease of risk, for which estimates from studies of smoking were used. A sensitivity analysis showed that the precise value of the time constant(s) was not critical for the resulting LLE. An interesting aspect of the model was that the relation between population total LLE and PM2.5 concentration was numerically almost indistinguishable from a straight line, even though the functional dependence was nonlinear. This essentially linear behavior implies that the detailed history of a change in concentration does not matter, except for the effects of discounting. This model was used to correct the data of the largest study of chronic mortality for variations in past exposure, performed by Pope et al. in 1995; the correction factor was shown to depend on assumptions about the relative toxicity of the components of PM2.5. In the European Union, an increment of 1 μg/m3 of PM2.5 for 1 year implies an average LLE of 0.22 days per person. With regard to the social cost of an air pollution pulse, it was found that for typical discount rates (3% to 8% real) the cost was reduced by a factor of about 0.4 to 0.6 relative to the case with zero discount rate, if the value of a life year was taken as given; if the value of a life year was calculated from the “value of statistical life” by assuming the latter as a series of discounted annual values, the cost varied by at most ±20% relative to the case with zero discount rate. To assess the uncertainties, this study also examined how the LLE depended on the demographics (mortality and age pyramid) of a population, and how it would change if the relative risk varied with age, in the manner suggested by smoking studies. These points were found to have a relatively small effect (compared to the epidemiological uncertainties) on the calculated LLE.

Suggested Citation

  • Ingemar Leksell & Ari Rabl, 2001. "Air Pollution and Mortality: Quantification and Valuation of Years of Life Lost," Risk Analysis, John Wiley & Sons, vol. 21(5), pages 843-843, October.
  • Handle: RePEc:wly:riskan:v:21:y:2001:i:5:p:843-843
    DOI: 10.1111/0272-4332.215156
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/0272-4332.215156
    Download Restriction: no

    File URL: https://libkey.io/10.1111/0272-4332.215156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Chanel & Laura Perez & Nino Künzli & Sylvia Medina, 2016. "The hidden economic burden of air pollution-related morbidity: evidence from the Aphekom project," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(9), pages 1101-1115, December.
    2. Olivier Chanel, 2022. "Impact of COVID‑19 Activity Restrictions on Air Pollution: Methodological Considerations in the Economic Valuation of the Long‑Term Effects on Mortality [Impact sur la pollution de l’air des restri," Working Papers hal-03778336, HAL.
    3. Thopil, George Alex & Pouris, Anastassios, 2015. "Aggregation and internalisation of electricity externalities in South Africa," Energy, Elsevier, vol. 82(C), pages 501-511.
    4. Olivier Chanel & Pascale Scapecchi & Jean-Christophe Vergnaud, 2006. "How to correctly assess mortality benefits in public policies," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 49(5), pages 759-776.
    5. Mahesh D. Pandey & Jatin S. Nathwani, 2003. "Canada Wide Standard for Particulate Matter and Ozone: Cost‐Benefit Analysis Using a Life Quality Index," Risk Analysis, John Wiley & Sons, vol. 23(1), pages 55-67, February.
    6. Susan L. Greco & Anna Belova & Jin Huang, 2016. "Benefits of Decreased Mortality Risk from Reductions in Primary Mobile Source Fine Particulate Matter: A Limited Data Approach for Urban Areas Worldwide," Risk Analysis, John Wiley & Sons, vol. 36(9), pages 1783-1802, September.
    7. Delucchi, Mark A. & McCubbin, Donald R., 2010. "External Costs of Transport in the U.S," Institute of Transportation Studies, Working Paper Series qt13n8v8gq, Institute of Transportation Studies, UC Davis.
    8. Olivier Chanel, 2022. "Impact of COVID-19 Activity Restrictions on Air Pollution: Methodological Considerations in the Economic Valuation of the Long-Term Effects on Mortality," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 534-35, pages 103-118.
    9. Mark Delucchi & Don McCubbin, 2011. "External Costs of Transport in the United States," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 15, Edward Elgar Publishing.
    10. Shih, Hsiu-Ching & Chiang, Chia-Yun & Lai, Hsin-Chih & Hsiao, Min-Chuan & Chen, Li-Heng & Ma, Hwong-wen, 2023. "Assessing the nexus of electric vehicle and energy policies on health risks," Energy, Elsevier, vol. 282(C).
    11. Marielle Berriet-Solliec & Abdoul Diallo & Cédric Gendre & Vincent Larmet & Denis Lépicier & Lionel Védrine, 2022. "The National Rural Development Programme in France: How Does It Contribute to the Attractiveness of Regions? [Le programme hexagonal de développement rural : quelle contribution à l’attractivité de," Post-Print hal-03814799, HAL.
    12. Alain Le Tertre & Joel Schwartz & Giota Touloumi, 2005. "Empirical Bayes and Adjusted Estimates Approach to Estimating the Relation of Mortality to Exposure of PM10," Risk Analysis, John Wiley & Sons, vol. 25(3), pages 711-718, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:21:y:2001:i:5:p:843-843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.