IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v20y2000i3p363-376.html
   My bibliography  Save this article

Regression Models and Risk Estimation for Mixed Discrete and Continuous Outcomes in Developmental Toxicology

Author

Listed:
  • Meredith M. Regan
  • Paul J. Catalano

Abstract

Multivariate dose‐response models have recently been proposed for developmental toxicity data to simultaneously model malformation incidence (a binary outcome), and reductions in fetal weight (a continuous outcome). In this and other applications, the binary outcome often represents a dichotomization of another outcome or a composite of outcomes, which facilitates analysis. For example, in Segment II developmental toxicology studies, multiple malformation types (i.e., external, visceral, skeletal) are evaluated on each fetus; malformation status may also be ordinally measured (e.g., normal, signs of variation, full malformation). A model is proposed is for fetal weight and multiple malformation variables measured on an ordinal scale, where the correlations between the outcomes and between the offspring within a litter are taken into account. Fully specifying the joint distribution of outcomes within a litter is avoided by specifying only the distribution of the multivariate outcome for each fetus and using generalized estimating equation methodology to account for correlations due to litter clustering. The correlations between the outcomes are required to characterize joint risk to the fetus, and are therefore a focus of inference. Dose‐response models and their application to quantitative risk assessment are illustrated using data from a recent developmental toxicology experiment of ethylene oxide in mice.

Suggested Citation

  • Meredith M. Regan & Paul J. Catalano, 2000. "Regression Models and Risk Estimation for Mixed Discrete and Continuous Outcomes in Developmental Toxicology," Risk Analysis, John Wiley & Sons, vol. 20(3), pages 363-376, June.
  • Handle: RePEc:wly:riskan:v:20:y:2000:i:3:p:363-376
    DOI: 10.1111/0272-4332.203035
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/0272-4332.203035
    Download Restriction: no

    File URL: https://libkey.io/10.1111/0272-4332.203035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
    2. Alfred K. Mbah & Ibrahim Hamisu & Eknath Naik & Hamisu M. Salihu, 2014. "Estimating Benchmark Exposure for Air Particulate Matter Using Latent Class Models," Risk Analysis, John Wiley & Sons, vol. 34(11), pages 2053-2062, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:20:y:2000:i:3:p:363-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.