IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v10y2019i1p67-103.html
   My bibliography  Save this article

Inference in dynamic discrete choice problems under local misspecification

Author

Listed:
  • Federico A. Bugni
  • Takuya Ura

Abstract

Single‐agent dynamic discrete choice models are typically estimated using heavily parametrized econometric frameworks, making them susceptible to model misspecification. This paper investigates how misspecification affects the results of inference in these models. Specifically, we consider a local misspecification framework in which specification errors are assumed to vanish at an arbitrary and unknown rate with the sample size. Relative to global misspecification, the local misspecification analysis has two important advantages. First, it yields tractable and general results. Second, it allows us to focus on parameters with structural interpretation, instead of “pseudo‐true” parameters. We consider a general class of two‐step estimators based on the K‐stage sequential policy function iteration algorithm, where K denotes the number of iterations employed in the estimation. This class includes Hotz and Miller ()'s conditional choice probability estimator, Aguirregabiria and Mira ()'s pseudo‐likelihood estimator, and Pesendorfer and Schmidt‐Dengler ()'s asymptotic least squares estimator. We show that local misspecification can affect the asymptotic distribution and even the rate of convergence of these estimators. In principle, one might expect that the effect of the local misspecification could change with the number of iterations K. One of our main findings is that this is not the case, that is, the effect of local misspecification is invariant to K. In practice, this means that researchers cannot eliminate or even alleviate problems of model misspecification by choosing K.

Suggested Citation

  • Federico A. Bugni & Takuya Ura, 2019. "Inference in dynamic discrete choice problems under local misspecification," Quantitative Economics, Econometric Society, vol. 10(1), pages 67-103, January.
  • Handle: RePEc:wly:quante:v:10:y:2019:i:1:p:67-103
    DOI: 10.3982/QE917
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/QE917
    Download Restriction: no

    File URL: https://libkey.io/10.3982/QE917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Aguirregabiria & Mathieu Marcoux, 2021. "Imposing equilibrium restrictions in the estimation of dynamic discrete games," Quantitative Economics, Econometric Society, vol. 12(4), pages 1223-1271, November.
    2. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    3. Philipp Eisenhauer & Lena Janys & Christopher Walsh & Janós Gabler, 2023. "Structural Models for Policy-Making," CRC TR 224 Discussion Paper Series crctr224_2023_484, University of Bonn and University of Mannheim, Germany.
    4. Stéphane Bonhomme & Martin Weidner, 2022. "Minimizing sensitivity to model misspecification," Quantitative Economics, Econometric Society, vol. 13(3), pages 907-954, July.
    5. Philipp Eisenhauer & Janos Gabler & Lena Janys, 2021. "Structural Models for Policy-Making: Coping with Parametric Uncertainty," ECONtribute Discussion Papers Series 082, University of Bonn and University of Cologne, Germany.
    6. Eisenhauer, Philipp & Gabler, Janos & Janys, Lena, 2021. "Structural Models for Policy-Making: Coping with Parametric Uncertainty," IZA Discussion Papers 14317, Institute of Labor Economics (IZA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:10:y:2019:i:1:p:67-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.