Author
Listed:
- Lauren R. Schurmeier
- Gwendolyn E. Brouwer
- Sarah A. Fagents
Abstract
The Arctic landscape has experienced many dramatic forms of change due to anthropogenic warming. Large crater‐like forms surrounded by fragmented blocks scattered outward to great distances with precursor mounds appeared in the continuous permafrost zone of the Yamal and Gydan peninsulas of Western Siberia. The morphologies of these craters, in addition to the abundant evidence of active and intense gas emissions across the region, indicate that they formed due the subsurface accumulation, pressurization, and explosive release of gasses trapped within the permafrost. Therefore, these craters were termed “gas emission craters” (GEC). However, some have suggested that in addition to gas accumulation, these features form in a manner similar to ice‐cored pingos and require pressurization due to the freezing of subsurface ice. This is despite the fact that not all GECs form in areas conducive to pingo‐like ice accumulation. Here, we test whether the pressurization and explosive release of methane gas alone can reproduce the observed morphology of the first‐discovered and most intensely studied GEC, Yamal crater. We use the available field and satellite data to constrain the initial dimension parameters of a model of the explosion process and consider several plausible configurations for the unknown interior cavity shape, the overlying permafrost cap thickness, and gas chamber volume. The explosion process is modeled in phases: gas migrates upward and accumulates in the subsurface until the gas pressure fractures the overlying cap, the expanding gas and cap blocks are initially accelerated outward together, and then the blocks are launched as projectiles. The sizes and locations of the ejected blocks found at Yamal crater are used to determine the initial gas pressures required to launch those projectiles to the observed locations. Finally, we estimate the amount of gas released in each of the multiple model runs testing different plausible internal cavity geometries. For the range of plausible block sizes and densities, and a subset of gas chamber volumes considered, we find that the gas pressure (0.6–2.6 MPa) required to launch the Yamal crater blocks to their observed distances was within the range of the sum of the ice/permafrost tensile strength and the lithostatic pressure (0.22–2.87 MPa). Thus, the observed blocks could have been launched by the energy required to fracture and displace the overlying permafrost cap. We show that the mechanism of formation of this GEC does not require pressure from the freezing of ice in the subsurface to crack and explode the overlying permafrost—gas pressure alone can produce these GECs. We expect that as our planet warms, the Siberian permafrost will continue to warm, weaken, and release gasses such as the greenhouse gas methane, and contribute to a permafrost carbon‐positive feedback cycle that would lead to the formation of even more explosive GECs.
Suggested Citation
Lauren R. Schurmeier & Gwendolyn E. Brouwer & Sarah A. Fagents, 2024.
"Formation of the Siberian Yamal gas emission crater via accumulation and explosive release of gas within permafrost,"
Permafrost and Periglacial Processes, John Wiley & Sons, vol. 35(1), pages 33-45, January.
Handle:
RePEc:wly:perpro:v:35:y:2024:i:1:p:33-45
DOI: 10.1002/ppp.2211
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:35:y:2024:i:1:p:33-45. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.