Author
Listed:
- Martín Mendoza López
- Carla Tapia Baldis
- Dario Trombotto Liaudat
- Noelia Sileo
Abstract
Rock glaciers are the most common landforms of the Andean periglacial landscape in the Central Andes of San Juan, Argentina. Their active layer is gravelly with a typical openwork structure. The upper parts of these rock glaciers are coarse‐grained Turbic Cryosols, with no vegetation cover. Since March 2018, coarse soils in the active layer of the “Candidato” rock glacier have been monitored (31.9°S, 70.18°W). Three trenches, 4,000 m a.s.l. and down to a depth of 90 cm, were equipped with sensors to measure soil temperature and volumetric water content. We also measured particle size distributions and calculated thermal properties from soil samples. The mean thermal conductivities for unfrozen and frozen soils were 0.69 and 0.54 W m−1 K−1, respectively, and the mean thermal diffusivities were 2.05 × 10−7 and 1.64 × 10–7 m2 s−1, respectively. Analysis of the seasonal thermal and hydrological fluxes in the active layer is challenging, as the physical properties change cyclically, thus controlling processes such as water storage, infiltration and seepage, heat balance, mechanical behavior, and kinematic response. We used the Coupled Heat and Mass Transfer Model for the Soil–Plant–Atmosphere System (COUP) numerical computerized model, performing a site‐specific calibration, to simulate soil temperatures, active layer thicknesses, and seasonal freezing–thawing depths. The model implemented, in combination with a reanalysis of the meteorological data series, performed very well to reproduce the data from thermo‐sensors placed in the ground. This proposed methodology is viable for areas with limited instrumentation or low accessibility. The “Candidato” rock glacier can be used as a pilot model for thermal modeling purposes on rhyolitic rock glaciers in the region.
Suggested Citation
Martín Mendoza López & Carla Tapia Baldis & Dario Trombotto Liaudat & Noelia Sileo, 2023.
"Thermal simulations on periglacial soils of the Central Andes, Argentina,"
Permafrost and Periglacial Processes, John Wiley & Sons, vol. 34(3), pages 296-316, July.
Handle:
RePEc:wly:perpro:v:34:y:2023:i:3:p:296-316
DOI: 10.1002/ppp.2189
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:34:y:2023:i:3:p:296-316. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.