Author
Listed:
- Fabian Fleischer
- Florian Haas
- Moritz Altmann
- Jakob Rom
- Bettina Knoflach
- Michael Becht
Abstract
Rock glaciers are cryo‐conditioned downslope‐creeping landforms in high mountains. Their dynamics are changing due to external factors influenced by climate change. Although there has been a growing scientific interest in mountain permafrost and thus in rock glaciers in recent years, their historical development, especially before the first alpine‐wide aerial image flights in the 1950s, has hardly been researched. Therefore, we utilize a historical stereophotogrammetric map from 1922 and historical flow velocity profiles (1938–1953) and relate them to data derived from historical aerial photographs and airborne laser scanning data in several time slices between 1953 and 2021. By doing so, the development of flow velocity, surface elevation changes, and frontal advance of the two lobes of the composite rock glacier Inner Ölgrube, Kaunertal, Austria, is analyzed and compared over almost a century. Results indicate an increased frontal advance in the laterally confined area of one lobe and a severe subsidence in the upper area of both lobes between 1922 and 1953. Whereas the former could be explained by a combination of the short warm phase in the 1940s and 1950s and the (subsurface) topography, the latter might be attributed to the strong melting of superimposed debris‐covered dead ice bodies, a relict of the Little Ice Age (LIA) glaciation. Both factors might also contribute to the increased flow velocities between 1938 and 1953, which are still recognizable in the 1953–1970 time step. Although both lobes follow a general similar trend, which is in line with the alpine‐wide trend of flow velocity acceleration in the 1990s, differences in the geomorphic development of the two lobes were identified. In addition to a slightly varying evolution of the flow velocities, the timing and magnitude of the volume changes are different. Furthermore, both lobes display a dissimilar mechanism of frontal advance over the entire study period. Because the external forcing is identical, the varying development might be attributed to variations in internal structure, bedrock topography, or upslope connection of the lobes. Due to the lateral constriction, the subsurface topography, and the LIA maximum extent of the glacier, it is assumed that the geomorphic development of the Innere Ölgruben rock glacier, particularly before 1953, represents a special case, and the results are not simply transferable to other rock glaciers.
Suggested Citation
Fabian Fleischer & Florian Haas & Moritz Altmann & Jakob Rom & Bettina Knoflach & Michael Becht, 2023.
"Combination of historical and modern data to decipher the geomorphic evolution of the Innere Ölgruben rock glacier, Kaunertal, Austria, over almost a century (1922–2021),"
Permafrost and Periglacial Processes, John Wiley & Sons, vol. 34(1), pages 3-21, January.
Handle:
RePEc:wly:perpro:v:34:y:2023:i:1:p:3-21
DOI: 10.1002/ppp.2178
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:34:y:2023:i:1:p:3-21. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.