Author
Listed:
- Martyna E. Górska
- Barbara Woronko
Abstract
Coarse sand‐sized (0.5–1.0 mm) grains of vein quartz were subjected to frost‐induced stress under controlled laboratory conditions. A total of 1,000 freeze–thaw (FT) cycles, simulated under different (low, high) water mineralization conditions in the temperature range from −5°C up to +10°C, were used to test effects on collected samples. Scanning electron microscopic (SEM) microtextural analysis of grain surfaces was performed at 0 (start) and after 50, 100, 300, 700, and 1,000 FT cycles. The results indicate that variable frost‐induced microtextural imprints encountered on quartz grain surfaces prior to and following analysis depend largely on the mineralization (dissolved solute content) of water involved in the weathering process. The higher the water mineralization, the greater the intensity of mechanical weathering. Two predominant outcomes in the course of these micro‐scale frost weathering tests have been identified: a physical (mechanical) aspect manifested by the occurrence of conchoidal fractures and breakage block microtextures dominating up to 300 FT cycles, and a chemical aspect resulting in the occurrence of precipitation crusts and obliteration of grain microrelief. Moreover, three additional stages of microtexture development may be distinguished with the evolution of frost‐induced microrelief on the surface of quartz grains: (i) initial cracks of large‐sized conchoidal fractures, (ii) increasing frost cycles yielding additional small‐sized conchoidal fractures, and (iii) advanced breakage blocks. Frost‐induced exposure of fresh, unweathered grain surfaces leads to refreshing of the grain surface.
Suggested Citation
Martyna E. Górska & Barbara Woronko, 2022.
"Multi‐stage evolution of frost‐induced microtextures on the surface of quartz grains—An experimental study,"
Permafrost and Periglacial Processes, John Wiley & Sons, vol. 33(4), pages 470-489, October.
Handle:
RePEc:wly:perpro:v:33:y:2022:i:4:p:470-489
DOI: 10.1002/ppp.2164
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:33:y:2022:i:4:p:470-489. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.