IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v33y2022i4p406-424.html
   My bibliography  Save this article

Ground warming and permafrost degradation in various terrestrial ecosystems in northcentral Mongolia

Author

Listed:
  • Qinxue Wang
  • Tomohiro Okadera
  • Masataka Watanabe
  • Tonghua Wu
  • Batkhishig Ochirbat

Abstract

To detect the response of permafrost to climate change in various terrestrial ecosystems, we established a permafrost monitoring network in 2007, which includes eight boreholes to monitor ground temperatures in forest, meadow, steppe, moderately dry steppe, and wetland ecosystems and three Automatic Weather Stations (AWS) to monitor climatic factors, such as wind speed (Ws), air temperature (Ta), relative humidity (RH), precipitation (P), solar radiation (Rs), net radiation (Rn), soil heat flux (SHF), soil temperature (Ts), and soil water content (SWC), in forest, meadow, and steppe ecosystems in north‐central Mongolia. Major indicators, including mean annual ground temperature (MAGT), active layer thickness (ALT), and depth of zero annual amplitude (DZAA), were estimated to detect permafrost degradation. The results show that MAGT has increased by 0.00–0.02°C per year (almost no change) in the ice‐poor permafrost areas and by 0.03–0.06°C per year in the ice‐rich permafrost on pingos and wetlands. ALT showed an annual increase of −0.78 to 0.36 cm (almost no change) in the forest and meadow ecosystems and 2.3–7.2 cm in wetland ecosystems, whereas it increased by 23.0–28.9 cm per year in the steppe ecosystems over the last decade. This implies that the permafrost has degraded more rapidly in the steppe ecosystems than in other ecosystems. Based on correlation analysis, ALT is correlated to P in the meadow ecosystems and to SWC in the forest ecosystem, and MAGT is correlated to RH. However, both ALT and MAGT show a close correlation with major climatic factors, such as Ta, RH, SHF, and SWC in the steppe ecosystem. DZAA shows a close negative correlation with Ta in all ecosystems. These results provide evidence for permafrost degradation and its different responses to climate change in various terrestrial ecosystems.

Suggested Citation

  • Qinxue Wang & Tomohiro Okadera & Masataka Watanabe & Tonghua Wu & Batkhishig Ochirbat, 2022. "Ground warming and permafrost degradation in various terrestrial ecosystems in northcentral Mongolia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 33(4), pages 406-424, October.
  • Handle: RePEc:wly:perpro:v:33:y:2022:i:4:p:406-424
    DOI: 10.1002/ppp.2161
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2161
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:33:y:2022:i:4:p:406-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.