IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v33y2022i4p370-385.html
   My bibliography  Save this article

Post‐glacial dynamics of an alpine Little Ice Age glacitectonized frozen landform (Aget, western Swiss Alps)

Author

Listed:
  • Julie Wee
  • Reynald Delaloye

Abstract

Glaciers and frozen‐debris landforms have coexisted and episodically or continuously interacted throughout the Holocene at elevations where the climate conditions are cold enough for permafrost to occur. In the European Alps, the Little Ice Age (LIA) characterized the apogee of the last interaction phase. In areas of consecutive post‐LIA glacier shrinkage, the geomorphological dominant conditioning of the ongoing paraglacial phase may have transitioned from glacial to periglacial and later even shifted to post‐periglacial. Such transitions can be observed through the morphodynamics of glacitectonized frozen landforms (GFLs), which are permafrost‐related pre‐existing frozen masses of debris deformed (tectonized) by the pressure exerted by an interacting glacier. This contribution aims at evidencing the processes driving the ongoing morphodynamical evolution of an actively back‐creeping GFL within the LIA forefield of the Aget glacier on the basis of long‐term time series of ground surface temperature, and in‐situ geodetic and geoelectrical measurements. Our observations for the last two decades (1998–2020), which have been the warmest since the LIA, reveal a resistivity decrease in the permafrost body and a surface subsidence of up to a few centimeters per year. The former indicate a liquid water‐to‐ice content ratio increase within the permafrost body and the latter a ground ice melt at the permafrost table, both processes having taken place heterogeneously at the scale of the landform. The absence of acceleration of landform motion during that period despite a probable warming trend of the frozen ground may indicate that the ongoing degradation is reaching a tipping point at which processes related to interparticle friction and thinning of the permafrost body contribute to gradually inactivate the mechanism of permafrost creep.

Suggested Citation

  • Julie Wee & Reynald Delaloye, 2022. "Post‐glacial dynamics of an alpine Little Ice Age glacitectonized frozen landform (Aget, western Swiss Alps)," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 33(4), pages 370-385, October.
  • Handle: RePEc:wly:perpro:v:33:y:2022:i:4:p:370-385
    DOI: 10.1002/ppp.2158
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2158
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:33:y:2022:i:4:p:370-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.