IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v33y2022i3p310-322.html
   My bibliography  Save this article

Temperature evolution and runoff contribution of three rock glaciers in Switzerland under future climate forcing

Author

Listed:
  • Luisa Pruessner
  • Matthias Huss
  • Daniel Farinotti

Abstract

With ongoing climate change water availability in the source regions of alpine streams are at stake. In particular, dry mountain regions which currently rely on glacial meltwater will need to adapt. Since rock glaciers are more resilient to climate change and occur in nearly all high‐mountain catchments around the globe with some form of glacierization, it is of interest to investigate their contribution to runoff under different climate scenarios. Three well‐monitored rock glacier sites in the Swiss Alps (Murtèl, Ritigraben, and Schafberg) have been investigated under the climate change scenarios corresponding to low, medium and high greenhouse gas emissions to determine how their runoff contribution is affected. By the end of the 21st century, runoff from permafrost melting could account for 5–12% (12.0% for Murtèl, 7.0% for Ritigraben, and 5.0% for Schafberg) of monthly catchment runoff at maximum in an average year, and up to 50% in extreme years. For the low‐emission scenario, little change in the runoff contribution from rock glaciers is found, while the medium‐emission scenario shows increased variability and a shift in the seasonal runoff peak to earlier in the year. The high‐emission scenario indicates a further increase in the variability of the permafrost runoff contribution and also the development of a secondary seasonal peak in autumn, most prominently in the late century.

Suggested Citation

  • Luisa Pruessner & Matthias Huss & Daniel Farinotti, 2022. "Temperature evolution and runoff contribution of three rock glaciers in Switzerland under future climate forcing," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 33(3), pages 310-322, July.
  • Handle: RePEc:wly:perpro:v:33:y:2022:i:3:p:310-322
    DOI: 10.1002/ppp.2149
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2149
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stuart A. Harris & David E. Pedersen, 1998. "Thermal regimes beneath coarse blocky materials," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 9(2), pages 107-120, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lin & Lai, Yuanming & Fortier, Daniel & Harris, Stuart A., 2022. "Impacts of snow cover on the pattern and velocity of air flow in air convection embankments of sub-Arctic regions," Renewable Energy, Elsevier, vol. 199(C), pages 1033-1046.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:33:y:2022:i:3:p:310-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.