Author
Listed:
- Yana Tikhonravova
- Elena Slagoda
- Vladislav Butakov
- Ekaterina Koroleva
- Galina Simonova
- Robert Sysolyatin
Abstract
Heterogeneous ice wedges were studied within the peatland of the drained lake on the Pur‐Taz interfluve (67°20′14.8″, 078°55′47.1″, Northwest Siberia). The elements of the ice‐wedge structure were identified: young ice wedge, shoulders, selvages, closed‐cavity ices, and ice lenses in a peatland. Different genetic types of ice (ice vein, congelation ice, and segregated ice) were revealed by analyzing the elements of the ice‐wedge structure under polarized light and analyzing their chemical compositions. Genetic types of the ice indicate the different mechanisms of ice‐wedge formation. The ice vein forms due to fast bilateral freezing of primarily meltwater in a thermal contraction crack. The congelation ice forms due to the slow freezing of free water that has accumulated into a thermokarst cavity. The segregated ice forms due to pore water migration to the freezing zone. The elements of the ice‐wedge structure have variable stable isotope values (δ18O from −13.5‰ to −21.9‰ and δD from −87.7‰ to −154.6‰). The high range of deuterium excess values (13.8‰ to 32‰) indicates fractionation at condensation. The mean winter paleotemperature calculated using Vasil’chuk’s equations for the ice‐wedge pats formed by the ice veins varied in the range of −18 to −22°C, which is not very different from current values and is consistent with the isotopic data of ice wedges from nearby regions of Northwest Siberia. The paleotemperature average error can equal 4.5°C if we ignore the data on the ice petrographic analysis. The error depends on where and how the ice wedges are sampled, because of varying genetic types within the ground ice. This could lead to different palaeoclimatological interpretations.
Suggested Citation
Yana Tikhonravova & Elena Slagoda & Vladislav Butakov & Ekaterina Koroleva & Galina Simonova & Robert Sysolyatin, 2022.
"Isotopic composition of heterogeneous ice wedges in peatlands of the Pur‐Taz interfluve (northern West Siberia),"
Permafrost and Periglacial Processes, John Wiley & Sons, vol. 33(2), pages 114-128, April.
Handle:
RePEc:wly:perpro:v:33:y:2022:i:2:p:114-128
DOI: 10.1002/ppp.2138
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:33:y:2022:i:2:p:114-128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.