IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v32y2021i4p618-626.html
   My bibliography  Save this article

A 10‐yr thermal regime of permafrost beneath and adjacent to an alpine thermokarst lake, Beiluhe Basin, Qinghai–Tibet Plateau, China

Author

Listed:
  • Zhizhong Sun
  • Shujuan Zhang
  • Guoyu Li
  • Guilong Wu
  • Yongzhi Liu

Abstract

Thermokarst lakes are distributed widely in permafrost regions on the Qinghai–Tibet Plateau (QTP), China. Better knowledge of ground thermal variability beneath and around thermokarst lakes is important for understanding future landscape development and hydrological changes. At a typical undisturbed small, shallow, alpine thermokarst lake in the Beiluhe Basin on the QTP, ground temperatures beneath and adjacent to the lake were monitored at four locations with maximum 30 m depth from the lake center to natural ground. The lake is elliptical with an area of ~700 m2 and maximum water depth of 0.6 m. Permafrost was present beneath and adjacent to the lake during the monitoring period. However, supra‐taliks were present above the permafrost table beneath the lake before monitoring of ground temperature began, but were absent around the lake. The supra‐permafrost taliks beneath the lake have thickened over time. The difference in mean permafrost table depth between the lake center and natural ground reached 5.14 m, and permafrost table depths increased beneath the lake, but changed indistinctively around the lake. Mean annual ground temperatures at different depths (5, 10, 20 and 30 m) were higher beneath the lake than around the lake, and mean increasing rates of ground temperature were also greater beneath the lake than around the lake. Ground temperature differences between the lake bottom and natural ground surface are important for understanding ground thermal patterns beneath and around thermokarst lakes.

Suggested Citation

  • Zhizhong Sun & Shujuan Zhang & Guoyu Li & Guilong Wu & Yongzhi Liu, 2021. "A 10‐yr thermal regime of permafrost beneath and adjacent to an alpine thermokarst lake, Beiluhe Basin, Qinghai–Tibet Plateau, China," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(4), pages 618-626, October.
  • Handle: RePEc:wly:perpro:v:32:y:2021:i:4:p:618-626
    DOI: 10.1002/ppp.2107
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2107
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenneth M. Hinkel & Yongwei Sheng & John D. Lenters & Evan A. Lyons & Richard A. Beck & Wendy R. Eisner & Jida Wang, 2012. "Thermokarst Lakes on the Arctic Coastal Plain of Alaska: Geomorphic Controls on Bathymetry," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 23(3), pages 218-230, July.
    2. Youhua Ran & Xin Li & Guodong Cheng & Tingjun Zhang & Qingbai Wu & Huijun Jin & Rui Jin, 2012. "Distribution of Permafrost in China: An Overview of Existing Permafrost Maps," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 23(4), pages 322-333, October.
    3. Alexandra Veremeeva & Stanislav Gubin, 2009. "Modern tundra landscapes of the Kolyma Lowland and their evolution in the Holocene," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 20(4), pages 399-406, October.
    4. Zhanju Lin & Fujun Niu & Zhiying Xu & Jian Xu & Ping Wang, 2010. "Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai‐Tibet Plateau," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 21(4), pages 315-324, October.
    5. Mark Torre Jorgenson & Guido Grosse, 2016. "Remote Sensing of Landscape Change in Permafrost Regions," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 27(4), pages 324-338, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Troy J. Bouffard & Ekaterina Uryupova & Klaus Dodds & Vladimir E. Romanovsky & Alec P. Bennett & Dmitry Streletskiy, 2021. "Scientific Cooperation: Supporting Circumpolar Permafrost Monitoring and Data Sharing," Land, MDPI, vol. 10(6), pages 1-17, June.
    2. Wei Shan & Chengcheng Zhang & Ying Guo & Lisha Qiu & Zhichao Xu & Yan Wang, 2022. "Spatial Distribution and Variation Characteristics of Permafrost Temperature in Northeast China," Sustainability, MDPI, vol. 14(13), pages 1-16, July.
    3. George Buslaev & Pavel Tsvetkov & Alexander Lavrik & Andrey Kunshin & Elizaveta Loseva & Dmitry Sidorov, 2021. "Ensuring the Sustainability of Arctic Industrial Facilities under Conditions of Global Climate Change," Resources, MDPI, vol. 10(12), pages 1-15, December.
    4. Chengcheng Zhang & Wei Shan & Shuai Liu & Ying Guo & Lisha Qiu, 2023. "Simulation of Spatiotemporal Distribution and Variation of 30 m Resolution Permafrost in Northeast China from 2003 to 2021," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
    5. Yueyan Pan & Shijun Zhou & Zhen Li & Mingxiang Zhang & Zhenming Zhang, 2022. "Hydrothermal Changes and Physicochemical Characteristics of Subtropical Subalpine Soils under Freezing and Thawing," Sustainability, MDPI, vol. 14(20), pages 1-11, October.
    6. Fujun Niu & Jing Luo & Zhanju Lin & Minhao Liu & Guoan Yin, 2014. "Thaw-induced slope failures and susceptibility mapping in permafrost regions of the Qinghai–Tibet Engineering Corridor, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1667-1682, December.
    7. Alexander N. Fedorov & Pavel Y. Konstantinov & Nikolay F. Vasiliev & Nikolay I. Basharin & Andrei G. Shepelev & Varvara A. Andreeva & Valerii P. Semenov & Yaroslav I. Torgovkin & Alexey R. Desyatkin &, 2022. "Ice Volumes in Permafrost Landscapes of Arctic Yakutia," Land, MDPI, vol. 11(12), pages 1-11, December.
    8. Yanyu Zhang & Shuying Zang & Miao Li & Xiangjin Shen & Yue Lin, 2021. "Spatial Distribution of Permafrost in the Xing’an Mountains of Northeast China from 2001 to 2018," Land, MDPI, vol. 10(11), pages 1-13, October.
    9. Christopher R. Burn, 2020. "Transactions of the International Permafrost Association Number 3," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 343-345, July.
    10. Xin Zhang & Lin Zhou & Yuqi Liu, 2018. "Modeling Land Use Changes and their Impacts on Non-Point Source Pollution in a Southeast China Coastal Watershed," IJERPH, MDPI, vol. 15(8), pages 1-15, July.
    11. Dongyu Yang & Daqing Zhan & Miao Li & Shuying Zang, 2023. "Factors Influencing the Spatiotemporal Changes of Permafrost in Northeast China from 1982 to 2020," Land, MDPI, vol. 12(2), pages 1-22, January.
    12. Raul‐David Șerban & Huijun Jin & Mihaela Șerban & Dongliang Luo, 2021. "Shrinking thermokarst lakes and ponds on the northeastern Qinghai‐Tibet plateau over the past three decades," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(4), pages 601-617, October.
    13. Xun Zhu & Timothy J. Pasch & Mohamed Aymane Ahajjam & Aaron Bergstrom, 2022. "Environmental Monitoring for Arctic Resiliency and Sustainability: An Integrated Approach with Topic Modeling and Network Analysis," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    14. Qinglin Li & Haibin Wei & Leilei Han & Fuyu Wang & Yangpeng Zhang & Shuanye Han, 2019. "Feasibility of Using Modified Silty Clay and Extruded Polystyrene (XPS) Board as the Subgrade Thermal Insulation Layer in a Seasonally Frozen Region, Northeast China," Sustainability, MDPI, vol. 11(3), pages 1-15, February.
    15. Julian B. Murton, 2021. "What and where are periglacial landscapes?," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(2), pages 186-212, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:32:y:2021:i:4:p:618-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.