IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v31y2020i1p200-212.html
   My bibliography  Save this article

Simulation of heat–water–mechanics process in a freezing soil under stepwise freezing

Author

Listed:
  • Ruiqiang Bai
  • Yuanming Lai
  • Zhemin You
  • Jingge Ren

Abstract

Frost heave is a process coupling heat transfer, water migration, water–ice phase change and deformation. Frost heave forms various landforms, such as frost mounds, ice pitons, sorted polygons and stone circles, and potentially induces a variety of engineering failures, such as building inclination, differential engineering foundation and pavement cracking. To understand the mechanism of frost heave under complex freezing paths, we provide a numerical heat–water–mechanics model that incorporates shrinkage in an unfrozen zone and uses a water content criterion to judge the formation of the ice lens. The model is then used to simulate the moisture, temperature, deformation and ice lens of a freezing soil during stepwise freezing. The simulated results for temperature, displacement and the ice lens are in good agreement with measured data, indicating that the model can be used to describe the heat–water–mechanics process in freezing soils under a complex freezing path. The freezing path determines the soil's water content profile in a manner like that in a stepwise freezing process, where each step produces a water‐content peak at the frozen fringe of the step. The model must consider shrinkage of the unfrozen area, or the amount of frost heave would be overestimated and the predicted ice lens would unrealistically be found in the frozen zone.

Suggested Citation

  • Ruiqiang Bai & Yuanming Lai & Zhemin You & Jingge Ren, 2020. "Simulation of heat–water–mechanics process in a freezing soil under stepwise freezing," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(1), pages 200-212, January.
  • Handle: RePEc:wly:perpro:v:31:y:2020:i:1:p:200-212
    DOI: 10.1002/ppp.2028
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2028
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yueyan Pan & Shijun Zhou & Zhen Li & Mingxiang Zhang & Zhenming Zhang, 2022. "Hydrothermal Changes and Physicochemical Characteristics of Subtropical Subalpine Soils under Freezing and Thawing," Sustainability, MDPI, vol. 14(20), pages 1-11, October.
    2. Baoping Zou & Bo Hu & Jianzhong Xia & Xiaoquan Li & Qizhi Chen & Bowen Kong & Jingyuan Ma, 2023. "Study on Temporal and Spatial Variation in Soil Temperature in Artificial Ground Freezing of Subway Cross Passage," Sustainability, MDPI, vol. 15(4), pages 1-19, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:31:y:2020:i:1:p:200-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.