IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v30y2019i2p90-103.html
   My bibliography  Save this article

Groundwater hydrogeochemistry in permafrost regions

Author

Listed:
  • Marion Cochand
  • John Molson
  • Jean‐Michel Lemieux

Abstract

This review paper provides a summary of the current state of knowledge regarding groundwater hydrogeochemistry in permafrost regions and presents expected impacts of permafrost degradation on groundwater quality. Using published case studies, the most practical monitoring approaches are reviewed, possible monitoring issues are highlighted, and links between groundwater chemistry signatures and associated flow systems in northern climates are identified. Hydrogeochemical characteristics of groundwater in permafrost regions depend on the same reactions as in nonpermafrost regions, but in acting as a confining layer, permafrost can affect groundwater chemistry by restricting recharge and limiting exchange of energy and mass between the ground surface, surface water and groundwater. Rock (mineral)–water interactions can also increase due to longer residence times. The impacts of climate change on groundwater quality in permafrost regions are thought to be linked to the loss of this confining layer. Various studies have reported significant modifications in shallow and deep groundwater contributions to surface water, marked by a decrease in dissolved organic carbon and an increase in total dissolved solids in stream water linked to declining permafrost coverage. Future studies related to hydrogeology in permafrost areas should include better in situ hydrogeochemical characterization of groundwater to assess its potential for future use as the climate warms.

Suggested Citation

  • Marion Cochand & John Molson & Jean‐Michel Lemieux, 2019. "Groundwater hydrogeochemistry in permafrost regions," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 30(2), pages 90-103, April.
  • Handle: RePEc:wly:perpro:v:30:y:2019:i:2:p:90-103
    DOI: 10.1002/ppp.1998
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.1998
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.1998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyuan Yang & Ping Wang & Chunnuan Deng & Shiqi Liu & Dan Chen & Ruixin Wang, 2024. "Differential Spatiotemporal Patterns of Major Ions and Dissolved Organic Carbon Variations from Non-Permafrost to Permafrost Arctic Basins: Insights from the Severnaya Dvina, Pechora and Taz Rivers," Land, MDPI, vol. 13(11), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:30:y:2019:i:2:p:90-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.