IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v29y2018i2p86-99.html
   My bibliography  Save this article

Spatial modeling of permafrost distribution and properties on the Qinghai‐Tibet Plateau

Author

Listed:
  • Xiaobo Wu
  • Zhuotong Nan
  • Shuping Zhao
  • Lin Zhao
  • Guodong Cheng

Abstract

Accurate information on the distribution of permafrost and its thermal and hydrological properties is critical for environmental management and engineering development. This study modeled the current state of permafrost on the Qinghai‐Tibet Plateau (QTP), including the spatial distribution of permafrost, active‐layer thickness (ALT), mean annual ground temperature (MAGT), depth of zero annual amplitude (DZAA) and ground‐ice content using an improved Noah land surface model (LSM). The improved model was examined at a typical permafrost site and then applied to the entire QTP using existing gridded meteorological data and newly developed soil data. The simulated permafrost distribution and properties were validated against existing permafrost maps in three representative survey areas and with measurements from 54 boreholes. The results indicate that the Noah LSM with augmented physics and proper soil data support can model permafrost over the QTP. Permafrost was simulated to underlie an area of 1.113 × 106 km2 in 2010, accounting for 43.8% of the entire area of the QTP. The modeled regional average ALT and MAGT were 3.23 m and −1.56°C, respectively. Spatially, MAGT increases and DZAA becomes shallower from north to south. Thermally unstable permafrost (MAGT above −0.5°C) is predominant, accounting for 38.75% of the whole permafrost area on the QTP. Ice‐rich permafrost was mainly simulated around lakes across the north‐central QTP.

Suggested Citation

  • Xiaobo Wu & Zhuotong Nan & Shuping Zhao & Lin Zhao & Guodong Cheng, 2018. "Spatial modeling of permafrost distribution and properties on the Qinghai‐Tibet Plateau," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 29(2), pages 86-99, April.
  • Handle: RePEc:wly:perpro:v:29:y:2018:i:2:p:86-99
    DOI: 10.1002/ppp.1971
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.1971
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.1971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Zhao & Chong Wang & Jiachen Wang, 2023. "Influence of Climate Warming on the Ground Surface Stability over Permafrost along the Qinghai–Tibet Engineering Corridor," Sustainability, MDPI, vol. 15(23), pages 1-19, November.
    2. Jianan Hu & Shuping Zhao & Zhuotong Nan & Xiaobo Wu & Xuehui Sun & Guodong Cheng, 2020. "An effective approach for mapping permafrost in a large area using subregion maps and satellite data," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 548-560, October.
    3. Xiqiang Wang & Rensheng Chen & Hongjie Sun, 2023. "Physical and Thermal Properties of Coarse-Fragment Soil in the Moraine-Talus Zone of the Qilian Mountains," Sustainability, MDPI, vol. 15(2), pages 1-12, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:29:y:2018:i:2:p:86-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.