Author
Listed:
- Nicolas Roux
- François Costard
- Christophe Grenier
Abstract
Experiments simulating the evolution of a river talik were performed in a cold room where a small channel carried flowing water through frozen saturated porous soil in a hydraulic flume. The sensitivity of thaw propagation to water temperature and velocity was determined to indicate the relative importance of these controlling parameters. Two types of soils were investigated (sand and silty clay), corresponding to contrasting hydrological, thermal and mechanical behaviours. The experimental results show that the sensitivity to water temperature was much higher than that to water velocity for the ranges considered. The experiments were compared with results from one‐dimensional numerical simulations to identify the thermal boundary conditions of the riverbed and to evaluate the capacity of the numerical code to represent the propagation of heat at depth. The results showed that the proper boundary conditions are of the Neumann type, where flux is expressed as a coefficient multiplied by the temperature difference between water and the soil surface. The value of this coefficient is evaluated as a function of flow velocity based on these experiments. As a first‐order approximation, this coefficient is assumed to be constant when considering seasonal flow variations. Copyright © 2017 John Wiley & Sons, Ltd.
Suggested Citation
Nicolas Roux & François Costard & Christophe Grenier, 2017.
"Laboratory and Numerical Simulation of the Evolution of a River's Talik,"
Permafrost and Periglacial Processes, John Wiley & Sons, vol. 28(2), pages 460-469, April.
Handle:
RePEc:wly:perpro:v:28:y:2017:i:2:p:460-469
DOI: 10.1002/ppp.1929
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:28:y:2017:i:2:p:460-469. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.