IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v27y2016i2p189-203.html
   My bibliography  Save this article

Improved Stefan Equation Correction Factors to Accommodate Sensible Heat Storage during Soil Freezing or Thawing

Author

Listed:
  • Barret L. Kurylyk
  • Masaki Hayashi

Abstract

In permafrost regions, the thaw depth strongly controls shallow subsurface hydrologic processes that in turn dominate catchment runoff. In seasonally freezing soils, the maximum expected frost depth is an important geotechnical engineering design parameter. Thus, accurately calculating the depth of soil freezing or thawing is an important challenge in cold regions engineering and hydrology. The Stefan equation is a common approach for predicting the frost or thaw depth, but this equation assumes negligible soil heat capacity and thus exaggerates the rate of freezing or thawing. The Neumann equation, which accommodates sensible heat, is an alternative implicit equation for calculating freeze‐thaw penetration. This study details the development of correction factors to improve the Stefan equation by accounting for the influence of the soil heat capacity and non‐zero initial temperatures. The correction factors are first derived analytically via comparison to the Neumann solution, but the resultant equations are complex and implicit. Explicit equations are obtained by fitting polynomial functions to the analytical results. These simple correction factors are shown to significantly improve the performance of the Stefan equation for several hypothetical soil freezing and thawing scenarios. Copyright © 2015 John Wiley & Sons, Ltd.

Suggested Citation

  • Barret L. Kurylyk & Masaki Hayashi, 2016. "Improved Stefan Equation Correction Factors to Accommodate Sensible Heat Storage during Soil Freezing or Thawing," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 27(2), pages 189-203, April.
  • Handle: RePEc:wly:perpro:v:27:y:2016:i:2:p:189-203
    DOI: 10.1002/ppp.1865
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.1865
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.1865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuyang Tu & Xiuqin Yang & Xiang Zhou & Maohui Luo & Xu Zhang, 2019. "Experimenting and Modeling Thermal Performance of Ground Heat Exchanger Under Freezing Soil Conditions," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    2. Ceretani, Andrea N. & Salva, Natalia N. & Tarzia, Domingo A., 2018. "Approximation of the modified error function," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 607-617.
    3. Shawn M. Chartrand & A. Mark Jellinek & Antero Kukko & Anna Grau Galofre & Gordon R. Osinski & Shannon Hibbard, 2023. "High Arctic channel incision modulated by climate change and the emergence of polygonal ground," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Salva, N.N. & Tarzia, D.A., 2024. "Relationship between two solidification problems in order to determine unknown thermal coefficients when the heat transfer coefficient is very large," Applied Mathematics and Computation, Elsevier, vol. 468(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:27:y:2016:i:2:p:189-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.