Author
Abstract
This paper identifies a long‐term (approximately 30 year) pattern in variability of pipeline–permafrost interactions in north‐west Siberia, which has serious implications for reliability of gas pipelines operating in the region. It is shown that the presence or absence of an artificial warming influence (compressor stations or gas processing plants) is the most important factor influencing interaction variability. In the early 1970s, before the installation of multiple compressor stations, large sections of trunk gas pipeline transmitted cool gas (below 0 °C), favouring the dominance of frost action, leading to frost jacking. The commissioning of multiple compressor stations from the mid 1970s and gas processing plants at one gas field in the 1980s with inadequate gas cooling was responsible for initiation of a technogenic process known as the ‘thaw→freeze–thaw process’. It is caused by transmission of warm gas (invariably well above 0 °C) through trunk and gathering pipelines buried in permafrost. Evolution of the process is most rapid in close proximity to the warming influence (within 20 km) and in areas of continuous permafrost with high volumetric ice content. Interactions are initially dominated by thaw‐related displacement of pipelines, followed by the upward flotation of buoyant, poorly ballasted pipes in soils that have lost load‐bearing capacity. Pipelines that have floated up are exposed to extreme fluctuations in seasonal air temperatures, chilling the gas in winter and warming it in summer. This leaves a pipeline vulnerable to freeze–thaw processes, such as jacking, and build‐up of stresses in pipe steel. It is suggested that these problems could be avoided by regulating (cooling) gas temperatures from the moment a new pipeline is commissioned and not after several years of operation. Copyright © 2000 John Wiley & Sons, Ltd. Le présent article considère la variabilité à long terme (approximativement 30 ans) des interactions pipeline–pergélisol dans la Sibérie septentrionale occidentale; ces interactions ont de sérieuses implications pour la fiabilité des pipelines de gaz qui opèrent dans la région. Il est montré que la présence ou l'absence d'un réchauffement artificiel dû à des stations de compression ou des installations de traitement du gaz est le plus important facteur influençant les interactions qui se produisent. Au début des années 1970, avant l'installation de multiples stations avec des compresseurs, de grandes sections des pipelines principaux écoulaient du gaz froid (sous 0 °C) favorisant la dominance du gel et conduisant à des soulèvements par le gel. La mise en place de nombreuses stations de compresseurs au milieu des années 1970 et l'installation d'unités de traitement des gaz sur un champ de gaz en 1980 avec un refroidissement inadéquat des gaz ont été responsables du début de processus de gel/dégel. Ils sont dus au passage de gaz chauds (toujours bien au‐dessus de 0 °C) à travers le réseau principal et les réseaux secondaires de pipelines enterrés dans le pergélisol. L'évolution est la plus rapide à proximité immédiate de la cause du réchauffement (dans les 20 km) et se produisent dans des régions de pergélisol continu comprenant un volume élevé de glace. Les interactions sont au départ dominées par des déplacements des pipelines résultant du dégel et suivies par la suite par un déplacement vers le haut par flottaison des pipes pauvrement lestés de ballast dans des sols qui ont perdu leur portance. Les pipelines qui arrivent en surface sont alors exposés aux fluctuations saisonnières extrêmes des températures de l'air, glaçant le gaz en hiver et le réchauffant en été. Ceci rend les pipelines vulnérables aux processus liés aux gels/dégels et entraîne aussi l'apparition de phénomènes de fatigue dans l'acier des conduites. Il est suggéré que ces problèmes pourraient être évités en refroidissant le gaz dès que un nouveau pipeline est mis en service et non pas après plusieurs années d'opération. Copyright © 2000 John Wiley & Sons, Ltd.
Suggested Citation
Ben J. Seligman, 2000.
"Long‐term variability of pipeline–permafrost interactions in north‐west Siberia,"
Permafrost and Periglacial Processes, John Wiley & Sons, vol. 11(1), pages 5-22, January.
Handle:
RePEc:wly:perpro:v:11:y:2000:i:1:p:5-22
DOI: 10.1002/(SICI)1099-1530(200001/03)11:13.0.CO;2-C
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Stepan Varlamov & Pavel Skryabin & Aleksandr Zhirkov & Zhi Wen, 2022.
"Monitoring the Permafrost Conditions along Pipeline Routes in Central Yakutia, Russia,"
Land, MDPI, vol. 11(12), pages 1-15, December.
- Xu, Jiuping & Tang, Min & Liu, Tingting & Fan, Lurong, 2024.
"Technological paradigm-based development strategy towards natural gas hydrate technology,"
Energy, Elsevier, vol. 289(C).
- Yanhu, Mu & Guoyu, Li & Wei, Ma & Zhengmin, Song & Zhiwei, Zhou & Wang, Fei, 2020.
"Rapid permafrost thaw induced by heat loss from a buried warm-oil pipeline and a new mitigation measure combining seasonal air-cooled embankment and pipe insulation,"
Energy, Elsevier, vol. 203(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:11:y:2000:i:1:p:5-22. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.