IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v61y2014i6p427-434.html
   My bibliography  Save this article

New maximum entropy methods for modeling lifetime distributions

Author

Listed:
  • Majid Asadi
  • Nader Ebrahimi
  • Ehsan S. Soofi
  • Somayeh Zarezadeh

Abstract

This article introduces two new maximum entropy (ME) methods for modeling the distribution of time to an event. One method is within the classical ME framework and provides characterizations of change point models such as the piecewise exponential distribution. The second method uses the entropy of the equilibrium distribution (ED) for the objective function and provides new characterizations of the exponential, Weibull, Pareto, and uniform distributions. With the same moment constraints, the classical ME and the maximum ED entropy algorithms generate different models for the interarrival time. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 427–434, 2014

Suggested Citation

  • Majid Asadi & Nader Ebrahimi & Ehsan S. Soofi & Somayeh Zarezadeh, 2014. "New maximum entropy methods for modeling lifetime distributions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 427-434, September.
  • Handle: RePEc:wly:navres:v:61:y:2014:i:6:p:427-434
    DOI: 10.1002/nav.21593
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21593
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nader Ebrahimi & Ehsan S. Soofi & Refik Soyer, 2013. "When are observed failures more informative than observed survivals?," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(2), pages 102-110, March.
    2. Thomas Mazzuchi & Ehsan Soofi & Refik Soyer, 2008. "Bayes Estimate and Inference for Entropy and Information Index of Fit," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 428-456.
    3. P.K. Kapur & Hoang Pham & A. Gupta & P.C. Jha, 2011. "Software Reliability Assessment with OR Applications," Springer Series in Reliability Engineering, Springer, number 978-0-85729-204-9, March.
    4. Felix Belzunce & Jorge Navarro & José M. Ruiz & Yolanda del Aguila, 2004. "Some results on residual entropy function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 59(2), pages 147-161, May.
    5. Ebrahimi, Nader & Soofi, Ehsan S. & Soyer, Refik, 2008. "Multivariate maximum entropy identification, transformation, and dependence," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1217-1231, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bajgiran, Amirsaman H. & Mardikoraem, Mahsa & Soofi, Ehsan S., 2021. "Maximum entropy distributions with quantile information," European Journal of Operational Research, Elsevier, vol. 290(1), pages 196-209.
    2. Asadi, Majid & Ebrahimi, Nader & Soofi, Ehsan S., 2018. "Optimal hazard models based on partial information," European Journal of Operational Research, Elsevier, vol. 270(2), pages 723-733.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viral Gupta & P. K. Kapur & Deepak Kumar, 2019. "Prioritizing and Optimizing Disaster Recovery Solution using Analytic Network Process and Multi Attribute Utility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 171-207, January.
    2. Vibha Verma & Sameer Anand & P. K. Kapur & Anu G. Aggarwal, 2022. "Unified framework to assess software reliability and determine optimal release time in presence of fault reduction factor, error generation and fault removal efficiency," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2429-2441, October.
    3. Yeh, Wei-Chang, 2017. "Evaluation of the one-to-all-target-subsets reliability of a novel deterioration-effect acyclic multi-state information network," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 132-137.
    4. Subhashis Chatterjee & Ankur Shukla, 2016. "Change point–based software reliability model under imperfect debugging with revised concept of fault dependency," Journal of Risk and Reliability, , vol. 230(6), pages 579-597, December.
    5. Billio, Monica & Casarin, Roberto & Costola, Michele & Pasqualini, Andrea, 2016. "An entropy-based early warning indicator for systemic risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 45(C), pages 42-59.
    6. Athanasios Sachlas & Takis Papaioannou, 2014. "Residual and Past Entropy in Actuarial Science and Survival Models," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 79-99, March.
    7. Avinash K. Shrivastava & Armaan Singh Ahluwalia & P. K. Kapur, 0. "On interdisciplinarity between product adoption and vulnerability discovery modeling," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    8. Yoshinobu Tamura & Shigeru Yamada, 2022. "Prototype of 3D Reliability Assessment Tool Based on Deep Learning for Edge OSS Computing," Mathematics, MDPI, vol. 10(9), pages 1-20, May.
    9. Yoshinobu Tamura & Shigeru Yamada, 2022. "Maintenance effort management based on double jump diffusion model for OSS project," Annals of Operations Research, Springer, vol. 312(1), pages 411-426, May.
    10. Sunoj, S.M. & Sankaran, P.G., 2012. "Quantile based entropy function," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1049-1053.
    11. Ranjan Kumar & Subhash Kumar & Sanjay K. Tiwari, 2019. "A study of software reliability on big data open source software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 242-250, April.
    12. Misbah Anjum & Vernika Agarwal & P. K. Kapur & Sunil Kumar Khatri, 2020. "Two-phase methodology for prioritization and utility assessment of software vulnerabilities," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 289-300, July.
    13. Kamlesh Kumar Raghuvanshi & Arun Agarwal & Khushboo Jain & V. B. Singh, 2022. "A generalized prediction model for improving software reliability using time-series modelling," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1309-1320, June.
    14. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    15. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 0. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    16. Rajesh, G. & Abdul-Sathar, E.I. & Maya, R., 2015. "Local linear estimation of residual entropy function of conditional distributions," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 1-14.
    17. Iulia-Elena Hirica & Cristina-Liliana Pripoae & Gabriel-Teodor Pripoae & Vasile Preda, 2022. "Lie Symmetries of the Nonlinear Fokker-Planck Equation Based on Weighted Kaniadakis Entropy," Mathematics, MDPI, vol. 10(15), pages 1-22, August.
    18. Ashish Kumar & Monika Saini & Dinesh Kumar Saini & Nikhilesh Badiwal, 2021. "Cyber physical systems-reliability modelling: critical perspective and its impact," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1334-1347, December.
    19. Deepika & Adarsh Anand & Ompal Singh & P. K. Kapur, 2021. "Three-dimensional wiener process based entropy prediction modelling for OSS," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 188-198, February.
    20. Navarro, Jorge, 2008. "Characterizations using the bivariate failure rate function," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1349-1354, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:61:y:2014:i:6:p:427-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.