IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v58y2011i5p457-477.html
   My bibliography  Save this article

Annealing adaptive search, cross‐entropy, and stochastic approximation in global optimization

Author

Listed:
  • Jiaqiao Hu
  • Ping Hu

Abstract

The Annealing Adaptive Search (AAS) algorithm for global optimization searches the solution space by sampling from a sequence of Boltzmann distributions. For a class of optimization problems, it has been shown that the complexity of AAS increases at most linearly in the problem dimension. However, despite its desirable property, sampling from a Boltzmann distribution at each iteration of the algorithm remains a practical challenge. Prior work to address this issue has focused on embedding Markov chain‐based sampling techniques within the AAS framework. In this article, based on ideas from the recent Cross‐Entropy method and Model Reference Adaptive Search, we propose an algorithm, called Model‐based Annealing Random Search (MARS), that complements prior work by sampling solutions from a sequence of surrogate distributions that iteratively approximate the target Boltzmann distributions. We establish a novel connection between MARS and the well‐known Stochastic Approximation method. By exploiting this connection, we prove the global convergence of MARS and characterize its asymptotic convergence rate behavior. Our empirical results indicate promising performance of the algorithm in comparison with some of the existing methods. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011

Suggested Citation

  • Jiaqiao Hu & Ping Hu, 2011. "Annealing adaptive search, cross‐entropy, and stochastic approximation in global optimization," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(5), pages 457-477, August.
  • Handle: RePEc:wly:navres:v:58:y:2011:i:5:p:457-477
    DOI: 10.1002/nav.20462
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20462
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Qi & Tan, Ken Seng & Zhang, Jinggong, 2023. "Empirical tail risk management with model-based annealing random search," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 106-124.
    2. Qi Zhang & Jiaqiao Hu, 2019. "Simulation Optimization Using Multi-Time-Scale Adaptive Random Search," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-34, December.
    3. Bing Wang & Jiaqiao Hu, 2018. "Some Monotonicity Results for Stochastic Kriging Metamodels in Sequential Settings," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 278-294, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:58:y:2011:i:5:p:457-477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.