IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v51y2004i1p137-152.html
   My bibliography  Save this article

Facility location models for immobile servers with stochastic demand

Author

Listed:
  • Qian Wang
  • Rajan Batta
  • Christopher M. Rump

Abstract

This paper presents several models for the location of facilities subject to congestion. Motivated by applications to locating servers in communication networks and automatic teller machines in bank systems, these models are developed for situations in which immobile service facilities are congested by stochastic demand originating from nearby customer locations. We consider this problem from three different perspectives, that of (i) the service provider (wishing to limit costs of setup and operating servers), (ii) the customers (wishing to limit costs of accessing and waiting for service), and (iii) both the service provider and the customers combined. In all cases, a minimum level of service quality is ensured by imposing an upper bound on the server utilization rate at a service facility. The latter two perspectives also incorporate queueing delay costs as part of the objective. Some cases are amenable to an optimal solution. For those cases that are more challenging, we either propose heuristic procedures to find good solutions or establish equivalence to other well‐studied facility location problems. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.

Suggested Citation

  • Qian Wang & Rajan Batta & Christopher M. Rump, 2004. "Facility location models for immobile servers with stochastic demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 137-152, February.
  • Handle: RePEc:wly:navres:v:51:y:2004:i:1:p:137-152
    DOI: 10.1002/nav.10110
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.10110
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.10110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alfred A. Kuehn & Michael J. Hamburger, 1963. "A Heuristic Program for Locating Warehouses," Management Science, INFORMS, vol. 9(4), pages 643-666, July.
    2. Gautam, N., 2002. "Performance analysis and optimization of web proxy servers and mirror sites," European Journal of Operational Research, Elsevier, vol. 142(2), pages 396-418, October.
    3. Arthur J. Swersey & Lakshman S. Thakur, 1995. "An Integer Programming Model for Locating Vehicle Emissions Testing Stations," Management Science, INFORMS, vol. 41(3), pages 496-512, March.
    4. Christopher M. Rump & Shaler Stidham, 1998. "Stability and Chaos in Input Pricing for a Service Facility with Adaptive Customer Response to Congestion," Management Science, INFORMS, vol. 44(2), pages 246-261, February.
    5. Berman, Obed, 1995. "The maximizing market size discretionary facility location problem with congestion," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 39-46, March.
    6. Peter Kolesar, 1984. "Stalking the Endangered CAT: A Queueing Analysis of Congestion at Automatic Teller Machines," Interfaces, INFORMS, vol. 14(6), pages 16-26, December.
    7. Qian Wang & Rajan Batta & Christopher Rump, 2002. "Algorithms for a Facility Location Problem with Stochastic Customer Demand and Immobile Servers," Annals of Operations Research, Springer, vol. 111(1), pages 17-34, March.
    8. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    9. Vladimir Marianov & Miguel Ríos, 2000. "A probabilistic quality of service constraint for a location model of switches in ATM communications networks," Annals of Operations Research, Springer, vol. 96(1), pages 237-243, November.
    10. Amiri, Ali, 1998. "The design of service systems with queueing time cost, workload capacities and backup service," European Journal of Operational Research, Elsevier, vol. 104(1), pages 201-217, January.
    11. Oded Berman & Richard C. Larson & Nikoletta Fouska, 1992. "Optimal Location of Discretionary Service Facilities," Transportation Science, INFORMS, vol. 26(3), pages 201-211, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Liang & Mengshi Lu & Zuo‐Jun Max Shen & Runyu Tang, 2021. "Data Center Network Design for Internet‐Related Services and Cloud Computing," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2077-2101, July.
    2. Zhang, Yue & Atkins, Derek, 2019. "Medical facility network design: User-choice and system-optimal models," European Journal of Operational Research, Elsevier, vol. 273(1), pages 305-319.
    3. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2019. "Service system design for managing interruption risks: A backup-service risk-mitigation strategy," European Journal of Operational Research, Elsevier, vol. 274(2), pages 417-431.
    4. Derya Celik Turkoglu & Mujde Erol Genevois, 2020. "A comparative survey of service facility location problems," Annals of Operations Research, Springer, vol. 292(1), pages 399-468, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davood Shishebori & Lawrence Snyder & Mohammad Jabalameli, 2014. "A Reliable Budget-Constrained FL/ND Problem with Unreliable Facilities," Networks and Spatial Economics, Springer, vol. 14(3), pages 549-580, December.
    2. Averbakh, Igor & Berman, Oded, 1996. "Locating flow-capturing units on a network with multi-counting and diminishing returns to scale," European Journal of Operational Research, Elsevier, vol. 91(3), pages 495-506, June.
    3. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    4. S. A. MirHassani & R. Ebrazi, 2013. "A Flexible Reformulation of the Refueling Station Location Problem," Transportation Science, INFORMS, vol. 47(4), pages 617-628, November.
    5. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    6. Lin, Zhenhong & Ogden, Joan & Fan, Yueyue & Chen, Chien-Wei, 2009. "The Fuel-Travel-Back Approach to Hydrogen Station Siting," Institute of Transportation Studies, Working Paper Series qt14p44238, Institute of Transportation Studies, UC Davis.
    7. Snežana Tadić & Mladen Krstić & Željko Stević & Miloš Veljović, 2023. "Locating Collection and Delivery Points Using the p -Median Location Problem," Logistics, MDPI, vol. 7(1), pages 1-17, February.
    8. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2019. "Service system design for managing interruption risks: A backup-service risk-mitigation strategy," European Journal of Operational Research, Elsevier, vol. 274(2), pages 417-431.
    9. Erdoğan, Sevgi & Çapar, İsmail & Çapar, İbrahim & Nejad, Mohammad Motalleb, 2022. "Establishing a statewide electric vehicle charging station network in Maryland: A corridor-based station location problem," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    10. Tanaka, Ken-ichi & Furuta, Takehiro & Toriumi, Shigeki, 2019. "Railway flow interception location model: Model development and case study of Tokyo metropolitan railway network," Operations Research Perspectives, Elsevier, vol. 6(C).
    11. Robert Aboolian & Oded Berman & Zvi Drezner, 2009. "The multiple server center location problem," Annals of Operations Research, Springer, vol. 167(1), pages 337-352, March.
    12. Zhang, Yue & Berman, Oded & Verter, Vedat, 2009. "Incorporating congestion in preventive healthcare facility network design," European Journal of Operational Research, Elsevier, vol. 198(3), pages 922-935, November.
    13. Robert Aboolian & Oded Berman & Dmitry Krass, 2012. "Profit Maximizing Distributed Service System Design with Congestion and Elastic Demand," Transportation Science, INFORMS, vol. 46(2), pages 247-261, May.
    14. Bell, Michael G.H. & Fonzone, Achille & Polyzoni, Chrisanthi, 2014. "Depot location in degradable transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 148-161.
    15. Melkote, Sanjay & Daskin, Mark S., 2001. "An integrated model of facility location and transportation network design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 515-538, July.
    16. Colmenar, J. Manuel & Greistorfer, Peter & Martí, Rafael & Duarte, Abraham, 2016. "Advanced Greedy Randomized Adaptive Search Procedure for the Obnoxious p-Median problem," European Journal of Operational Research, Elsevier, vol. 252(2), pages 432-442.
    17. Yang, Woosuk, 2018. "A user-choice model for locating congested fast charging stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 189-213.
    18. Karatas, Mumtaz & Yakıcı, Ertan, 2019. "An analysis of p-median location problem: Effects of backup service level and demand assignment policy," European Journal of Operational Research, Elsevier, vol. 272(1), pages 207-218.
    19. Juana L. Redondo & Alfredo Marín & Pilar M. Ortigosa, 2016. "A parallelized Lagrangean relaxation approach for the discrete ordered median problem," Annals of Operations Research, Springer, vol. 246(1), pages 253-272, November.
    20. Tong, Daoqin & Ren, Fang & Mack, James, 2012. "Locating farmers’ markets with an incorporation of spatio-temporal variation," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 149-156.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:51:y:2004:i:1:p:137-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.