IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v50y2003i4p345-363.html
   My bibliography  Save this article

Analysis of a finite‐buffer bulk‐service queue with discrete‐Markovian arrival process: D‐MAP/Ga,b/1/N

Author

Listed:
  • M.L. Chaudhry
  • U.C. Gupta

Abstract

Discrete‐time queues with D‐MAP arrival process are more useful in modeling and performance analysis of telecommunication networks based on the ATM environment. This paper analyzes a finite‐buffer discrete‐time queue with general bulk‐service rule, wherein the arrival process is D‐MAP and service times are arbitrarily and independently distributed. The distributions of buffer contents at various epochs (departure, random, and prearrival) have been obtained using imbedded Markov chain and supplementary variable methods. Finally, some performance measures such as loss probability and average delay are discussed. Numerical results are also presented in some cases. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 345–363, 2003.

Suggested Citation

  • M.L. Chaudhry & U.C. Gupta, 2003. "Analysis of a finite‐buffer bulk‐service queue with discrete‐Markovian arrival process: D‐MAP/Ga,b/1/N," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(4), pages 345-363, June.
  • Handle: RePEc:wly:navres:v:50:y:2003:i:4:p:345-363
    DOI: 10.1002/nav.10047
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.10047
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.10047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Heimann & Marcel F. Neuts, 1973. "The single server queue in discrete time‐numerical analysis IV," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 20(4), pages 753-766, December.
    2. Marcel F. Neuts & Eugene Klimko, 1973. "The single server queue in discrete time‐numerical analysis III," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 20(3), pages 557-567, September.
    3. Marcel F. Neuts, 1973. "The single server queue in discrete time‐numerical analysis I," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 20(2), pages 297-304, June.
    4. Eugene M. Klimko & Marcel F. Neuts, 1973. "The single server queue in discrete time‐numerical analysis II," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 20(2), pages 305-319, June.
    5. Attahiru Sule Alfa & Marcel F. Neuts, 1995. "Modelling Vehicular Traffic Using the Discrete Time Markovian Arrival Process," Transportation Science, INFORMS, vol. 29(2), pages 109-117, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hugo P. Simão & Warren B. Powell, 1988. "Waiting time distributions for transient bulk queues with general vehicle dispatching strategies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(2), pages 285-306, April.
    2. Pianykh, Oleg S. & Perez, Sebastian & Zhang, Chengzhao “Richard”, 2024. "Discrete scheduling and critical utilization," European Journal of Operational Research, Elsevier, vol. 312(2), pages 445-455.
    3. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    4. Attahiru Alfa, 2002. "Discrete time queues and matrix-analytic methods," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 147-185, December.
    5. Banoth Ravi & Manoj Kumar & Yu‐Chen Hu & Shamsul Hassan & Bittu Kumar, 2023. "Stochastic modeling and performance analysis in balancing load and traffic for vehicular ad hoc networks: A review," International Journal of Network Management, John Wiley & Sons, vol. 33(5), September.
    6. Long, Keke & Shi, Haotian & Chen, Zhiwei & Liang, Zhaohui & Li, Xiaopeng & de Souza, Felipe, 2024. "Bi-scale car-following model calibration based on corridor-level trajectory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    7. Kim, Jungyeol & Sarkar, Saswati & Venkatesh, Santosh S. & Ryerson, Megan Smirti & Starobinski, David, 2020. "An epidemiological diffusion framework for vehicular messaging in general transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 160-190.
    8. Yang, Qiaoli & Shi, Zhongke, 2018. "The evolution process of queues at signalized intersections under batch arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 413-425.
    9. Liu, Baoliang & Wen, Yanqing & Qiu, Qingan & Shi, Haiyan & Chen, Jianhui, 2022. "Reliability analysis for multi-state systems under K-mixed redundancy strategy considering switching failure," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    11. Yang, Qiaoli & Fu, Xue, 2024. "An extended queueing model for vehicles at signalized intersections considering the platoon correlated arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    12. Neda Mirzaeian & Soo-Haeng Cho & Alan Scheller-Wolf, 2021. "A Queueing Model and Analysis for Autonomous Vehicles on Highways," Management Science, INFORMS, vol. 67(5), pages 2904-2923, May.
    13. António Pacheco & Maria Lurdes Simões Simões & Paula Milheiro-Oliveira, 2017. "Queues with Server Vacations as a Model for Pretimed Signalized Urban Traffic," Transportation Science, INFORMS, vol. 51(3), pages 841-851, August.
    14. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.
    15. Yang, Qiaoli & Shi, Zhongke, 2021. "The queue dynamics of protected/permissive left turns at pre-timed signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:50:y:2003:i:4:p:345-363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.