IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v36y1989i6p797-806.html
   My bibliography  Save this article

Level crossing analysis of priority queues and a conservation identity for vacation models

Author

Listed:
  • J. George Shanthikumar

Abstract

The two purposes of this article are to illustrate the power and simplicity of level crossing analysis and to present a conservation identity for M/G/1 priority queues with server vacations. To illustrate the use of level crossing analysis we apply it to preemptive (resume) priority M/G/1 queues with single‐ and multiple‐server vacations considered by Kella and Yechiali (1986) and to non‐preemptive priority M/M/c queues considered by Kella and Yechiali (1985). The conservation identity presented here states that the ratios of mean waiting times in an M/G/1 queue with and without server vacation policies are independent of the service discipline for first come first served, shortest processing time, shortest processing time within generations and non‐preemptive priority service disciplines.

Suggested Citation

  • J. George Shanthikumar, 1989. "Level crossing analysis of priority queues and a conservation identity for vacation models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(6), pages 797-806, December.
  • Handle: RePEc:wly:navres:v:36:y:1989:i:6:p:797-806
    DOI: 10.1002/1520-6750(198912)36:63.0.CO;2-W
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(198912)36:63.0.CO;2-W
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(198912)36:63.0.CO;2-W?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. G. Shanthikumar & M. Jeya Chandra, 1982. "Application of level crossing analysis to discrete state processes in queueing systems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 29(4), pages 593-608, December.
    2. Charles E. Skinner, 1967. "A Priority Queuing System with Server-Walking Time," Operations Research, INFORMS, vol. 15(2), pages 278-285, April.
    3. S. W. Fuhrmann & Robert B. Cooper, 1985. "Stochastic Decompositions in the M / G /1 Queue with Generalized Vacations," Operations Research, INFORMS, vol. 33(5), pages 1117-1129, October.
    4. P. H. Brill & M. J. M. Posner, 1977. "Level Crossings in Point Processes Applied to Queues: Single-Server Case," Operations Research, INFORMS, vol. 25(4), pages 662-674, August.
    5. P. H. Brill & M. J. M. Posner, 1981. "The System Point Method in Exponential Queues: A Level Crossing Approach," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 31-49, February.
    6. Teghem, J., 1986. "Control of the service process in a queueing system," European Journal of Operational Research, Elsevier, vol. 23(2), pages 141-158, February.
    7. J. G. Shanthikumar, 1981. "M / G /1 Queues with Scheduling within Generations and Removable Server," Operations Research, INFORMS, vol. 29(5), pages 1010-1018, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. H. Brill & C. M. Harris, 1992. "Waiting times for M/G/1 queues with service‐time or delay‐dependent server vacations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(6), pages 775-787, October.
    2. Offer Kella, 1989. "The threshold policy in the M/G/1 queue with server vacations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(1), pages 111-123, February.
    3. Zhang, Zhe G. & Tian, Naishuo, 2004. "An analysis of queueing systems with multi-task servers," European Journal of Operational Research, Elsevier, vol. 156(2), pages 375-389, July.
    4. Ivo Adan & Brett Hathaway & Vidyadhar G. Kulkarni, 2019. "On first-come, first-served queues with two classes of impatient customers," Queueing Systems: Theory and Applications, Springer, vol. 91(1), pages 113-142, February.
    5. Wolfgang Stadje, 1998. "Level-Crossing Properties of the Risk Process," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 576-584, August.
    6. Ben A. Chaouch, 2007. "Inventory control and periodic price discounting campaigns," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 94-108, February.
    7. Mohebbi, Esmail & Hao, Daipeng, 2008. "An inventory model with non-resuming randomly interruptible lead time," International Journal of Production Economics, Elsevier, vol. 114(2), pages 755-768, August.
    8. Azoury, Katy S. & Miyaoka, Julia, 2020. "Optimal and simple approximate solutions to a production-inventory system with stochastic and deterministic demand," European Journal of Operational Research, Elsevier, vol. 286(1), pages 178-189.
    9. B. Kumar & D. Arivudainambi & A. Krishnamoorthy, 2006. "Some results on a generalized M/G/1 feedback queue with negative customers," Annals of Operations Research, Springer, vol. 143(1), pages 277-296, March.
    10. Esmail Mohebbi & Morton J.M. Posner, 1998. "A continuous‐review inventory system with lost sales and variable lead time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 259-278, April.
    11. Charles S. Tapiero & Morton J. Posner, 1988. "Warranty reserving," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(4), pages 473-479, August.
    12. Mohebbi, Esmail & Posner, Morton J. M., 1999. "A lost-sales continuous-review inventory system with emergency ordering," International Journal of Production Economics, Elsevier, vol. 58(1), pages 93-112, January.
    13. Mohebbi, Esmail & Hao, Daipeng, 2006. "When supplier's availability affects the replenishment lead time--An extension of the supply-interruption problem," European Journal of Operational Research, Elsevier, vol. 175(2), pages 992-1008, December.
    14. Tian, Naishuo & Zhang, Zhe George, 2006. "A two threshold vacation policy in multiserver queueing systems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 153-163, January.
    15. Brill, Percy H. & Yu, Kaiqi, 2011. "Analysis of risk models using a level crossing technique," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 298-309.
    16. Dimitris Bertsimas & José Niño-Mora, 1996. "Optimization of multiclass queueing networks with changeover times via the achievable region method: Part II, the multi-station case," Economics Working Papers 314, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 1998.
    17. Dimitris Bertsimas & José Niño-Mora, 1999. "Optimization of Multiclass Queueing Networks with Changeover Times Via the Achievable Region Approach: Part I, The Single-Station Case," Mathematics of Operations Research, INFORMS, vol. 24(2), pages 306-330, May.
    18. Priyanka Kalita & Gautam Choudhury & Dharmaraja Selvamuthu, 2020. "Analysis of Single Server Queue with Modified Vacation Policy," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 511-553, June.
    19. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    20. Mohebbi, E., 2008. "A note on a production control model for a facility with limited storage capacity in a random environment," European Journal of Operational Research, Elsevier, vol. 190(2), pages 562-570, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:36:y:1989:i:6:p:797-806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.