IDEAS home Printed from https://ideas.repec.org/a/wly/navlog/v33y1986i2p325-358.html
   My bibliography  Save this article

Successive approximation in separable programming: An improved procedure for convex separable programs

Author

Listed:
  • Lakshman S. Thakur

Abstract

We implement a solution procedure for general convex separable programs where a series of relatively small piecewise linear programs are solved as opposed to a single large one, and where, based on bound calculations developed in [13] and [14], the ranges of linearization are systematically reduced for successive programs. The procedure inherits ε‐convergence to the global optimum in a finite number of steps, but perhaps its most distinct feature is the rigorous way in which ranges containing an optimal solution are reduced from iteration to iteration. This paper describes the procedure, called successive approximation, discusses its convergence, tightness of the bounds, bound‐calculation overhead, and its robustness. It presents a computer implementation to demonstrate its effectiveness for general problems and compares it (1) with the more standard separable programming approach and (2) with one of the recent augmented Lagrangian methods [10] included in a comprehensive study of nonlinear programming codes [12]. It seems clear from over 130 cases resulting from 80 distinct problems studied here that significant savings in terms of computational effort can be realized by a judicious use of the procedure, and the ease with which it can be used is appreciably increased by the robustness it shows. Moreover, for most of these problems, the advantage increases as the size, nonlinearity, and the degree of desired accuracy increase. Other important benefits include significantly smaller storage requirements, the ability to estimate the error in the current solution, and to terminate the algorithm as soon as the acceptable level of accuracy has been achieved. Problems requiring up to about 10,000 nonzero elements in their specification and about 45,000 nonzero elements in the generated separable programs resulting from up to 70 original nonlinear variables and 70 nonlinear constraints are included in the computations.

Suggested Citation

  • Lakshman S. Thakur, 1986. "Successive approximation in separable programming: An improved procedure for convex separable programs," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 33(2), pages 325-358, May.
  • Handle: RePEc:wly:navlog:v:33:y:1986:i:2:p:325-358
    DOI: 10.1002/nav.3800330213
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.3800330213
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.3800330213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rainer E. Burkard & Horst W. Hamacher & Günter Rote, 1991. "Sandwich approximation of univariate convex functions with an application to separable convex programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(6), pages 911-924, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navlog:v:33:y:1986:i:2:p:325-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1931-9193 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.