IDEAS home Printed from https://ideas.repec.org/a/wly/navlog/v32y1985i2p249-261.html
   My bibliography  Save this article

Estimating critical path and arc probabilities in stochastic activity networks

Author

Listed:
  • George S. Fishman

Abstract

This article describes a new procedure for estimating parameters of a stochastic activity network of N arcs. The parameters include the probability that path m is the longest path, the probability that path m is the shortest path, the probability that arc i is on the longest path, and the probability that arc i is on the shortest path. The proposed procedure uses quasirandom points together with information on a cutset ℋ of the network to produce an upper bound of O[(log K)N−|ℋ|+1/K] on the absolute error of approximation, where K denotes the number of replications. This is a deterministic bound and is more favorable than the convergence rate of 1/K1/2 that one obtains from the standard error for K independent replications using random sampling. It is also shown how series reduction can improve the convergence rate by reducing the exponent on log K. The technique is illustrated using a Monte Carlo sampling experiment for a network of 16 relevant arcs with a cutset of ℋ = 7 arcs. The illustration shows the superior performance of using quasirandom points with a cutset (plan A) and the even better performance of using quasirandom points with the cutset together with series reduction (plan B) with regard to mean square error. However, it also shows that computation time considerations favor plan A when K is small and plan B when K is large.

Suggested Citation

  • George S. Fishman, 1985. "Estimating critical path and arc probabilities in stochastic activity networks," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 32(2), pages 249-261, May.
  • Handle: RePEc:wly:navlog:v:32:y:1985:i:2:p:249-261
    DOI: 10.1002/nav.3800320206
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.3800320206
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.3800320206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amir Azaron & Hideki Katagiri & Masatoshi Sakawa, 2007. "Time-cost trade-off via optimal control theory in Markov PERT networks," Annals of Operations Research, Springer, vol. 150(1), pages 47-64, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navlog:v:32:y:1985:i:2:p:249-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1931-9193 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.