IDEAS home Printed from https://ideas.repec.org/a/wly/navlog/v32y1985i1p165-177.html
   My bibliography  Save this article

A finite algorithm for concave minimization over a polyhedron

Author

Listed:
  • Harold P. Benson

Abstract

We present a new algorithm for solving the problem of minimizing a nonseparable concave function over a polyhedron. The algorithm is of the branch‐and‐bound type. It finds a globally optimal extreme point solution for this problem in a finite number of steps. One of the major advantages of the algorithm is that the linear programming subproblems solved during the branch‐and‐bound search each have the same feasible region. We discuss this and other advantages and disadvantages of the algorithm. We also discuss some preliminary computational experience we have had with our computer code for implementing the algorithm. This computational experience involved solving several bilinear programming problems with the code.

Suggested Citation

  • Harold P. Benson, 1985. "A finite algorithm for concave minimization over a polyhedron," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 32(1), pages 165-177, February.
  • Handle: RePEc:wly:navlog:v:32:y:1985:i:1:p:165-177
    DOI: 10.1002/nav.3800320119
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.3800320119
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.3800320119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Selcuk Erenguc, 1988. "Multiproduct dynamic lot‐sizing model with coordinated replenishments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(1), pages 1-22, February.
    2. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2023. "A general purpose exact solution method for mixed integer concave minimization problems," European Journal of Operational Research, Elsevier, vol. 309(3), pages 977-992.
    4. Kurt M. Bretthauer, 1994. "A penalty for concave minimization derived from the tuy cutting plane," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 455-463, April.
    5. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems (revised as on 12/08/2021)," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    6. Simeon vom Dahl & Andreas Löhne, 2020. "Solving polyhedral d.c. optimization problems via concave minimization," Journal of Global Optimization, Springer, vol. 78(1), pages 37-47, September.
    7. Harold P. Benson, 1996. "Deterministic algorithms for constrained concave minimization: A unified critical survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 765-795, September.
    8. Harold P. Benson & S. Selcuk Erenguc, 1990. "An algorithm for concave integer minimization over a polyhedron," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 515-525, August.
    9. Harold P. Benson, 2004. "Concave envelopes of monomial functions over rectangles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 467-476, June.
    10. Reiner Horst, 1990. "Deterministic methods in constrained global optimization: Some recent advances and new fields of application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 433-471, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navlog:v:32:y:1985:i:1:p:165-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1931-9193 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.