IDEAS home Printed from https://ideas.repec.org/a/wly/navlog/v20y1973i3p533-548.html
   My bibliography  Save this article

Concave minimization over a convex polyhedron

Author

Listed:
  • Hamdy A. Taha

Abstract

A general algorithm is developed for minimizing a well defined concave function over a convex polyhedron. The algorithm is basically a branch and bound technique which utilizes a special cutting plane procedure to' identify the global minimum extreme point of the convex polyhedron. The indicated cutting plane method is based on Glover's general theory for constructing legitimate cuts to identify certain points in a given convex polyhedron. It is shown that the crux of the algorithm is the development of a linear undrestimator for the constrained concave objective function. Applications of the algorithm to the fixed‐charge problem, the separable concave programming problem, the quadratic problem, and the 0‐1 mixed integer problem are discussed. Computer results for the fixed‐charge problem are also presented.

Suggested Citation

  • Hamdy A. Taha, 1973. "Concave minimization over a convex polyhedron," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 20(3), pages 533-548, September.
  • Handle: RePEc:wly:navlog:v:20:y:1973:i:3:p:533-548
    DOI: 10.1002/nav.3800200313
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.3800200313
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.3800200313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Selcuk Erenguc, 1988. "Multiproduct dynamic lot‐sizing model with coordinated replenishments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(1), pages 1-22, February.
    2. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2023. "A general purpose exact solution method for mixed integer concave minimization problems," European Journal of Operational Research, Elsevier, vol. 309(3), pages 977-992.
    4. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems (revised as on 12/08/2021)," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Harold P. Benson, 1996. "Deterministic algorithms for constrained concave minimization: A unified critical survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 765-795, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navlog:v:20:y:1973:i:3:p:533-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1931-9193 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.