IDEAS home Printed from https://ideas.repec.org/a/wly/navlog/v14y1967i3p317-327.html
   My bibliography  Save this article

Linear programming and the reliability of multicomponent systems

Author

Listed:
  • Peter J. Kolesar

Abstract

Several problems in the assignment of parallel redundant components to systems composed of elements subject to failure are considered. In each case the problem is to make an assignment which maximizes the system reliability subject to system constraints. Three distinct problems; are treated. The first is the classical problem of maximizing system reliability under total cost or weight constraints when components are subject to a single type of failure. The second problem deals with components which are subject to two types of failure and minimizes the probability of one mode of system failure subject to a constraint on the probability of the other mode of system failure. The third problem deals with components which may either fail to operate or may operate prematurely. System reliability is maximized subject to a constraint ori system safety. In each case the problem is formulated as an integer linear program. This has an advantage over alternative dynamic programming formulations in that standard algorithms may be employed to obtain numerical results.

Suggested Citation

  • Peter J. Kolesar, 1967. "Linear programming and the reliability of multicomponent systems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 14(3), pages 317-327.
  • Handle: RePEc:wly:navlog:v:14:y:1967:i:3:p:317-327
    DOI: 10.1002/nav.3800140305
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.3800140305
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.3800140305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Arezki Mellal & Enrico Zio, 2019. "An adaptive particle swarm optimization method for multi-objective system reliability optimization," Journal of Risk and Reliability, , vol. 233(6), pages 990-1001, December.
    2. Christopher Garcia, 2018. "Optimal multiunit transfer over adversarial paths with increasing intercept probabilities," IISE Transactions, Taylor & Francis Journals, vol. 50(11), pages 989-996, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navlog:v:14:y:1967:i:3:p:317-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1931-9193 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.