IDEAS home Printed from https://ideas.repec.org/a/wly/natres/v46y2022i3p289-310.html
   My bibliography  Save this article

Can digital economy alleviate CO2 emissions in the transport sector? Evidence from provincial panel data in China

Author

Listed:
  • Chien‐Chiang Lee
  • Ying Yuan
  • Huwei Wen

Abstract

The existing literature mainly focuses on the impact of information communication technologies on carbon emissions, but little attention has been paid to the role of the digital economy in transporting carbon emissions. This paper calculates the index of the digital economy through the entropy weight Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method and constructs the panel data of 30 provinces in China from 2008 to 2017. By extending the Stochastic Impacts by Regression on Population, Affluence and Technology model, this study explores the potential linear and non‐linear relationship between digital economy and carbon emissions in the transport sector. Empirical results show that the digital economy has the alleviating effect on carbon emissions in the transportation sector, and a change in the digital economy of one unit standard deviation resulted in a 6.14% reduction in carbon emissions. In terms of sub‐regions, the digital economy has a significant negative impact on transport carbon emissions in the eastern and central regions, while it is insignificant in the western regions. This paper further investigates the threshold effect of urbanization on the relationship between the digital economy and transportation‐related carbon emissions. The digital economy accelerates the transport sector's carbon emissions in the low urbanization stage, while it reduces the carbon emissions in the high urbanization stage.

Suggested Citation

  • Chien‐Chiang Lee & Ying Yuan & Huwei Wen, 2022. "Can digital economy alleviate CO2 emissions in the transport sector? Evidence from provincial panel data in China," Natural Resources Forum, Blackwell Publishing, vol. 46(3), pages 289-310, August.
  • Handle: RePEc:wly:natres:v:46:y:2022:i:3:p:289-310
    DOI: 10.1111/1477-8947.12258
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1477-8947.12258
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1477-8947.12258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Georgatzi, Vasiliki V. & Stamboulis, Yeoryios & Vetsikas, Apostolos, 2020. "Examining the determinants of CO2 emissions caused by the transport sector: Empirical evidence from 12 European countries," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 11-20.
    2. Carmen Nadia CIOCOIU, 2011. "Integrating Digital Economy And Green Economy: Opportunities For Sustainable Development," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 6(1), pages 33-43, February.
    3. Zihanxin Li & Nuoyan Li & Huwei Wen, 2021. "Digital Economy and Environmental Quality: Evidence from 217 Cities in China," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    4. Zhou, Fengxiu & Wang, Xiaoyu, 2022. "The carbon emissions trading scheme and green technology innovation in China: A new structural economics perspective," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 365-381.
    5. Wang, Haichao & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling & Zhou, Zhigang, 2015. "Modelling and optimization of the smart hybrid renewable energy for communities (SHREC)," Renewable Energy, Elsevier, vol. 84(C), pages 114-123.
    6. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    7. Lee, Chien-Chiang & Wang, Fuhao, 2022. "How does digital inclusive finance affect carbon intensity?," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 174-190.
    8. Andrés, Lidia & Padilla, Emilio, 2018. "Driving factors of GHG emissions in the EU transport activity," Transport Policy, Elsevier, vol. 61(C), pages 60-74.
    9. Manzoor Ahmad & Zeeshan Khan & Zia Ur Rahman & Shoukat Iqbal Khattak & Zia Ullah Khan, 2021. "Can innovation shocks determine CO2 emissions (CO2e) in the OECD economies? A new perspective," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 30(1), pages 89-109, January.
    10. Xu, Bin & Lin, Boqiang, 2016. "Differences in regional emissions in China's transport sector: Determinants and reduction strategies," Energy, Elsevier, vol. 95(C), pages 459-470.
    11. Neves, Sónia Almeida & Marques, António Cardoso & Fuinhas, José Alberto, 2017. "Is energy consumption in the transport sector hampering both economic growth and the reduction of CO2 emissions? A disaggregated energy consumption analysis," Transport Policy, Elsevier, vol. 59(C), pages 64-70.
    12. Shaozhou Qi & Huarong Peng & Xiujie Tan, 2019. "The Moderating Effect of R&D Investment on Income and Carbon Emissions in China: Direct and Spatial Spillover Insights," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    13. Bastani, Parisa & Heywood, John B. & Hope, Chris, 2012. "The effect of uncertainty on US transport-related GHG emissions and fuel consumption out to 2050," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 517-548.
    14. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    15. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    16. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    17. Yang, Mian & Ma, Tiemeng & Sun, Chuanwang, 2018. "Evaluating the impact of urban traffic investment on SO2 emissions in China cities," Energy Policy, Elsevier, vol. 113(C), pages 20-27.
    18. Wen, Huwei & Lee, Chien-Chiang & Zhou, Fengxiu, 2021. "Green credit policy, credit allocation efficiency and upgrade of energy-intensive enterprises," Energy Economics, Elsevier, vol. 94(C).
    19. Wu, Yizhong & Lee, Chien-Chiang & Lee, Chi-Chuan & Peng, Diyun, 2022. "Geographic proximity and corporate investment efficiency: Evidence from high-speed rail construction in China," Journal of Banking & Finance, Elsevier, vol. 140(C).
    20. Jiang Qingquan & Shoukat Iqbal Khattak & Manzoor Ahmad & Lin Ping, 2020. "A new approach to environmental sustainability: Assessing the impact of monetary policy on CO2 emissions in Asian economies," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1331-1346, September.
    21. Lee, Chien-Chiang & Hussain, Jafar & Chen, Yongxiu, 2022. "The optimal behavior of renewable energy resources and government's energy consumption subsidy design from the perspective of green technology implementation," Renewable Energy, Elsevier, vol. 195(C), pages 670-680.
    22. Wen, Huwei & Zhong, Qiming & Lee, Chien-Chiang, 2022. "Digitalization, competition strategy and corporate innovation: Evidence from Chinese manufacturing listed companies," International Review of Financial Analysis, Elsevier, vol. 82(C).
    23. Lee, Chien-Chiang & Xing, Wenwu & Lee, Chi-Chuan, 2022. "The impact of energy security on income inequality: The key role of economic development," Energy, Elsevier, vol. 248(C).
    24. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ge & Wen, Huwei, 2023. "The low-carbon effect of pursuing the honor of civilization? A quasi-experiment in Chinese cities," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 343-357.
    2. Li, Songran & Hu, Kaiwen & Kang, Xueqing, 2024. "Impact of financial technologies, digitalization, and natural resources on environmental degradation in G-20 countries: Does human resources matter?," Resources Policy, Elsevier, vol. 93(C).
    3. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Environmental Sustainability within Attaining Sustainable Development Goals: The Role of Digitalization and the Transport Sector," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    4. Tang, Tianwei & Jiang, Xiaojing & Zhu, Kaiwen & Ying, Ziyao & Liu, Wenyu, 2024. "Effects of the promotion pressure of officials on green low-carbon transition: Evidence from 277 cities in China," Energy Economics, Elsevier, vol. 129(C).
    5. Xingong Ding & Mengzhen Wang, 2024. "The Impact of Oil Price on Carbon Dioxide Emissions in the Transport Sector: The Threshold Effect of Environmental Policy Stringency," Energies, MDPI, vol. 17(17), pages 1-17, September.
    6. Huwei Wen & Jinxia Zhan, 2023. "New-type infrastructure and total factor productivity: evidence from listed manufacturing firms in China," Economic Change and Restructuring, Springer, vol. 56(6), pages 4465-4489, December.
    7. Shao, Hanhua & Wang, Yaning & Wen, Huwei, 2024. "Investigating the carbon curse of natural resource dependence: A carbon trading scheme," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 769-783.
    8. Zhang, Weike & Fan, Hongxia & Zhao, Qiwei, 2023. "Seeing green: How does digital infrastructure affect carbon emission intensity?," Energy Economics, Elsevier, vol. 127(PB).
    9. Chen, Jiamin & Chen, Yuwei, 2024. "Does natural resources rent promote carbon neutrality: The role of digital finance," Resources Policy, Elsevier, vol. 92(C).
    10. Wen, Huwei & Chen, Wenjing & Zhou, Fengxiu, 2023. "Does digital service trade boost technological innovation?: International evidence," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chien-Chiang & He, Zhi-Wen & Xiao, Fu, 2022. "How does information and communication technology affect renewable energy technology innovation? International evidence," Renewable Energy, Elsevier, vol. 200(C), pages 546-557.
    2. Lee, Chien-Chiang & Wang, Chang-song, 2022. "Financial development, technological innovation and energy security: Evidence from Chinese provincial experience," Energy Economics, Elsevier, vol. 112(C).
    3. Tianxiang Lv & Xu Wu, 2019. "Using Panel Data to Evaluate the Factors Affecting Transport Energy Consumption in China’s Three Regions," IJERPH, MDPI, vol. 16(4), pages 1-14, February.
    4. Zhenxiang Cao & Liqing Peng, 2023. "The Impact of Digital Economics on Environmental Quality: A System Dynamics Approach," SAGE Open, , vol. 13(4), pages 21582440231, December.
    5. Zhu, Chen & Xia, Yuqing & Liu, Qing & Hou, Bojun, 2023. "Deregulation and green innovation: Does cultural reform pilot project matter," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 84-105.
    6. Lv, Chengchao & Song, Jie & Lee, Chien-Chiang, 2022. "Can digital finance narrow the regional disparities in the quality of economic growth? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 502-521.
    7. Lee, Chien-Chiang & Tang, Manting & Lee, Chi-Chuan, 2023. "Reaping digital dividends: Digital inclusive finance and high-quality development of enterprises in China," Telecommunications Policy, Elsevier, vol. 47(2).
    8. Wen, Huwei & Liang, Weitao & Lee, Chien-Chiang, 2022. "Urban broadband infrastructure and green total-factor energy efficiency in China," Utilities Policy, Elsevier, vol. 79(C).
    9. Maxwell Chukwudi Udeagha & Nicholas Ngepah, 2022. "Dynamic ARDL Simulations Effects of Fiscal Decentralization, Green Technological Innovation, Trade Openness, and Institutional Quality on Environmental Sustainability: Evidence from South Africa," Sustainability, MDPI, vol. 14(16), pages 1-35, August.
    10. Liu, Jiaguo & Li, Sujuan & Ji, Qiang, 2021. "Regional differences and driving factors analysis of carbon emission intensity from transport sector in China," Energy, Elsevier, vol. 224(C).
    11. Wen, Huwei & Zhong, Qiming & Lee, Chien-Chiang, 2022. "Digitalization, competition strategy and corporate innovation: Evidence from Chinese manufacturing listed companies," International Review of Financial Analysis, Elsevier, vol. 82(C).
    12. Zhu, Chen & Lee, Chien-Chiang, 2022. "The effects of low-carbon pilot policy on technological innovation: Evidence from prefecture-level data in China," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    13. Andrés, Lidia & Padilla, Emilio, 2018. "Driving factors of GHG emissions in the EU transport activity," Transport Policy, Elsevier, vol. 61(C), pages 60-74.
    14. Huali Sun & Mengzhen Li & Yaofeng Xue, 2019. "Examining the Factors Influencing Transport Sector CO 2 Emissions and Their Efficiency in Central China," Sustainability, MDPI, vol. 11(17), pages 1-15, August.
    15. Zhang, Shengling & Wu, Zihao & He, Yinan & Hao, Yu, 2022. "How does the green credit policy affect the technological innovation of enterprises? Evidence from China," Energy Economics, Elsevier, vol. 113(C).
    16. Lee, Chien-Chiang & Feng, Yi & Peng, Diyun, 2022. "A green path towards sustainable development: The impact of low-carbon city pilot on energy transition," Energy Economics, Elsevier, vol. 115(C).
    17. Ştefan Cristian Gherghina & Mihaela Onofrei & Georgeta Vintilă & Daniel Ştefan Armeanu, 2018. "Empirical Evidence from EU-28 Countries on Resilient Transport Infrastructure Systems and Sustainable Economic Growth," Sustainability, MDPI, vol. 10(8), pages 1-34, August.
    18. Luo, Kang & Liu, Yaobin & Chen, Pei-Fen & Zeng, Mingli, 2022. "Assessing the impact of digital economy on green development efficiency in the Yangtze River Economic Belt," Energy Economics, Elsevier, vol. 112(C).
    19. Chien‐Chiang Lee & Godwin Olasehinde‐Williams, 2024. "Does economic complexity influence environmental performance? Empirical evidence from OECD countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 356-382, January.
    20. Lee, Chien-Chiang & Wang, Fuhao & Lou, Runchi, 2022. "Digital financial inclusion and carbon neutrality: Evidence from non-linear analysis," Resources Policy, Elsevier, vol. 79(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:natres:v:46:y:2022:i:3:p:289-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1477-8947 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.