IDEAS home Printed from https://ideas.repec.org/a/wly/natres/v36y2012i2p123-141.html
   My bibliography  Save this article

A disaggregated emissions inventory for Taiwan with uses in hybrid input‐output life cycle analysis (IO‐LCA)

Author

Listed:
  • Chia‐Hao Liu
  • Manfred Lenzen
  • Joy Murray

Abstract

This paper reports on a life‐cycle analysis (LCA) of Taiwan's “agriculture and forestry”, “crude petroleum, coal and natural gas extraction” and “electricity generation” sectors, revealing for the first time Taiwan's CO2 and CH4 emissions inventories and matching Taiwan's input‐output sectors. Integrated hybrid input‐output life cycle analysis is used to disaggregate the electricity generation sector into nuclear, hydro, gas, oil and coal, and cogeneration. Results show that the fossil‐fuel‐related electricity sub‐sectors have higher CO2 emissions intensity than the remaining sectors in the economy and that the “paddy rice” sector is Taiwan's most CH4‐intensive sector, making rice cultivation an important source of CH4 emissions. This work is vital to sound policy decisions concerning power generation, coal, and agriculture and forestry at the national level.

Suggested Citation

  • Chia‐Hao Liu & Manfred Lenzen & Joy Murray, 2012. "A disaggregated emissions inventory for Taiwan with uses in hybrid input‐output life cycle analysis (IO‐LCA)," Natural Resources Forum, Blackwell Publishing, vol. 36(2), pages 123-141, May.
  • Handle: RePEc:wly:natres:v:36:y:2012:i:2:p:123-141
    DOI: 10.1111/j.1477-8947.2012.01439.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1477-8947.2012.01439.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1477-8947.2012.01439.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manfred Lenzen & Blanca Gallego & Richard Wood, 2009. "Matrix Balancing Under Conflicting Information," Economic Systems Research, Taylor & Francis Journals, vol. 21(1), pages 23-44.
    2. Thomas Koellner & Sangwon Suh & Olaf Weber & Corinne Moser & Roland W. Scholz, 2007. "Environmental Impacts of Conventional and Sustainable Investment Funds Compared Using Input‐Output Life‐Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 11(3), pages 41-60, July.
    3. dos Santos, Marco Aurelio & Rosa, Luiz Pinguelli & Sikar, Bohdan & Sikar, Elizabeth & dos Santos, Ednaldo Oliveira, 2006. "Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants," Energy Policy, Elsevier, vol. 34(4), pages 481-488, March.
    4. Bullard, Clark W. & Penner, Peter S. & Pilati, David A., 1978. "Net energy analysis : Handbook for combining process and input-output analysis," Resources and Energy, Elsevier, vol. 1(3), pages 267-313, November.
    5. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    2. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    3. Stern, David I., 1997. "Limits to substitution and irreversibility in production and consumption: A neoclassical interpretation of ecological economics," Ecological Economics, Elsevier, vol. 21(3), pages 197-215, June.
    4. Suh, Sangwon, 2004. "Functions, commodities and environmental impacts in an ecological-economic model," Ecological Economics, Elsevier, vol. 48(4), pages 451-467, April.
    5. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    6. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    7. Cholapat Jongdeepaisal & Seigo Nasu, 2018. "Economic Impact Evaluation of a Biomass Power Plant Using a Technical Coefficient Pre-Adjustment in Hybrid Input-Output Analysis," Energies, MDPI, vol. 11(3), pages 1-11, March.
    8. Yuwen Chu & Yunlong Pan & Hongyi Zhan & Wei Cheng & Lei Huang & Zi Wu & Ling Shao, 2022. "Systems Accounting for Carbon Emissions by Hydropower Plant," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    9. Lenzen, Manfred & Dey, Christopher J., 2002. "Economic, energy and greenhouse emissions impacts of some consumer choice, technology and government outlay options," Energy Economics, Elsevier, vol. 24(4), pages 377-403, July.
    10. Shao, Ling & Wu, Zi & Zeng, L. & Chen, Z.M. & Zhou, Y. & Chen, G.Q., 2013. "Embodied energy assessment for ecological wastewater treatment by a constructed wetland," Ecological Modelling, Elsevier, vol. 252(C), pages 63-71.
    11. Kimberly Bawden & Eric Williams, 2015. "Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings," Challenges, MDPI, vol. 6(1), pages 1-19, April.
    12. Lenzen, Manfred & Wachsmann, Ulrike, 2004. "Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment," Applied Energy, Elsevier, vol. 77(2), pages 119-130, February.
    13. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    14. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    15. Jesper Munksgaard & Manfred Lenzen & Thomas C. Jensen & Lise-Lotte Pade, 2005. "Transport Energy Embodied in Consumer Goods: A Hybrid Life-Cycle Analysis," Energy & Environment, , vol. 16(2), pages 283-301, March.
    16. Lenzen, M. & Treloar, G., 2002. "Embodied energy in buildings: wood versus concrete--reply to Borjesson and Gustavsson," Energy Policy, Elsevier, vol. 30(3), pages 249-255, February.
    17. Maxime Agez & Guillaume Majeau‐Bettez & Manuele Margni & Anders H. Strømman & Réjean Samson, 2020. "Lifting the veil on the correction of double counting incidents in hybrid life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 517-533, June.
    18. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2013. "Life-cycle energy of residential buildings in China," Energy Policy, Elsevier, vol. 62(C), pages 656-664.
    19. Shao, Ling & Chen, G.Q., 2016. "Renewability assessment of a production system: Based on embodied energy as emergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 380-392.
    20. Abdeslam Boudhar & Said Boudhar & Aomar Ibourk, 2017. "An input–output framework for analysing relationships between economic sectors and water use and intersectoral water relationships in Morocco," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:natres:v:36:y:2012:i:2:p:123-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1477-8947 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.