IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v30y2010i11p1082-1099.html
   My bibliography  Save this article

Optimal approximations of nonlinear payoffs in static replication

Author

Listed:
  • Qiang Liu

Abstract

Static replication of nonlinear payoffs by line segments (or equivalently vanilla options) is an important hedging method, which unfortunately is only an approximation. If the strike prices of options are adjustable (for OTC options), two optimal approximations can be defined for replication by piecewise chords. The first is a naive minimum area approach, which seeks a set of strike prices to minimize the area enclosed by the payoff curve and the chords. The second improves on the first by taking the conditional distribution of the underlying into consideration, and minimizes the expected area instead. When the strike prices are fixed (for exchange‐traded options), a third or the approach of least expected squares locates the minimum for the expected sum of squared differences between the payoff and the replicating portfolio, by varying the weights or quantities of the options used in the replication. For a payoff of variance swap, minimum expected area and least expected squares are found to produce the best numerical results in terms of cost of replication. Finally, piecewise tangents can also be utilized in static replication, which together with replication by chords, forms a pair of lower or upper bound to a nonlinear payoff. © 2010 Wiley Periodicals, Inc. Jrl Fut Mark

Suggested Citation

  • Qiang Liu, 2010. "Optimal approximations of nonlinear payoffs in static replication," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(11), pages 1082-1099, November.
  • Handle: RePEc:wly:jfutmk:v:30:y:2010:i:11:p:1082-1099
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingtang Ma & Dongya Deng & Harry Zheng, 2016. "Convergence analysis and optimal strike choice for static hedges of general path-independent pay-offs," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 593-603, April.
    2. Shuxin Guo & Qiang Liu, 2019. "The Black-Scholes-Merton dual equation," Papers 1912.10380, arXiv.org, revised May 2024.
    3. Lo, Chien-Ling & Shih, Pai-Ta & Wang, Yaw-Huei & Yu, Min-Teh, 2019. "VIX derivatives: Valuation models and empirical evidence," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 1-21.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:30:y:2010:i:11:p:1082-1099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.