Author
Abstract
This article shows that the volatility smile is not necessarily inconsistent with the Black–Scholes analysis. Specifically, when transaction costs are present, the absence of arbitrage opportunities does not dictate that there exists a unique price for an option. Rather, there exists a range of prices within which the option's price may fall and still be consistent with the Black–Scholes arbitrage pricing argument. This article uses a linear program (LP) cast in a binomial framework to determine the smallest possible range of prices for Standard & Poor's 500 Index options that are consistent with no arbitrage in the presence of transaction costs. The LP method employs dynamic trading in the underlying and risk‐free assets as well as fixed positions in other options that trade on the same underlying security. One‐way transaction‐cost levels on the index, inclusive of the bid–ask spread, would have to be below six basis points for deviations from Black–Scholes pricing to present an arbitrage opportunity. Monte Carlo simulations are employed to assess the hedging error induced with a 12‐period binomial model to approximate a continuous‐time geometric Brownian motion. Once the risk caused by the hedging error is accounted for, transaction costs have to be well below three basis points for the arbitrage opportunity to be profitable two times out of five. This analysis indicates that market prices that deviate from those given by a constant‐volatility option model, such as the Black–Scholes model, can be consistent with the absence of arbitrage in the presence of transaction costs. © 2001 John Wiley & Sons, Inc. Jrl Fut Mark 21:1151–1179, 2001
Suggested Citation
Patrick J. Dennis, 2001.
"Optimal No‐Arbitrage Bounds on S&P 500 Index Options and the Volatility Smile,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(12), pages 1151-1179, December.
Handle:
RePEc:wly:jfutmk:v:21:y:2001:i:12:p:1151-1179
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:21:y:2001:i:12:p:1151-1179. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.