IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i2p606-622.html
   My bibliography  Save this article

Modelling and Forecasting of Exchange Rate Pairs Using the Kalman Filter

Author

Listed:
  • Paresh Date
  • Janeeta Maunthrooa

Abstract

Developing and employing practically useful and easy to calibrate models for prediction of exchange rates remains a challenging task, especially for highly volatile emerging market currencies. In this paper, we propose a novel approach for joint prediction of correlated exchange rates for two different currencies with respect to the same base currency. For this purpose, we reformulate a generalized version of a bivariate ARMA model into a state space model and use the Kalman filter for estimation and forecasting of the underlying exchange rates as latent variables. With extensive numerical experiments spanning 18 different exchange rates (across both emerging markets, developing and developed economies), we demonstrate that our approach consistently outperforms univariate ARMA models as well as the random walk model in short term out‐of‐sample prediction for various exchange rate pairs. Our study fills a gap in the empirical finance literature in terms of robust, explainable, accurate, and easy to calibrate models for forecasting correlated exchange rates. The proposed methodology has applications in exchange rate risk management as well as pricing of financial derivatives based on two exchange rates.

Suggested Citation

  • Paresh Date & Janeeta Maunthrooa, 2025. "Modelling and Forecasting of Exchange Rate Pairs Using the Kalman Filter," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 606-622, March.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:606-622
    DOI: 10.1002/for.3217
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3217
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:606-622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.