IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i2p255-269.html
   My bibliography  Save this article

Predictor Preselection for Mixed‐Frequency Dynamic Factor Models: A Simulation Study With an Empirical Application to GDP Nowcasting

Author

Listed:
  • Domenic Franjic
  • Karsten Schweikert

Abstract

We investigate the performance of dynamic factor model nowcasting with preselected predictors in a mixed‐frequency setting. The predictors are selected via the elastic net as it is common in the targeted predictor literature. A simulation study and an application to empirical data are used to evaluate different strategies for variable selection, the influence of tuning parameters, and to determine the optimal way to handle mixed‐frequency data. We propose a novel cross‐validation approach that connects the preselection and nowcasting step. In general, we find that preselecting provides more accurate nowcasts compared with the benchmark dynamic factor model using all variables. Our newly proposed cross‐validation method outperforms the other specifications in most cases.

Suggested Citation

  • Domenic Franjic & Karsten Schweikert, 2025. "Predictor Preselection for Mixed‐Frequency Dynamic Factor Models: A Simulation Study With an Empirical Application to GDP Nowcasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 255-269, March.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:255-269
    DOI: 10.1002/for.3193
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3193
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:255-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.