Author
Listed:
- Na Yang
- Dongwei Liu
- Qi Liu
- Zhiwei Li
- Tao Liu
- Jianfeng Wang
- Ze Xu
Abstract
The focus of the future of autonomous vehicles has shifted from feasibility to safety and comfort. The seat of an autonomous vehicle may be equipped with a rotational function, and the occupant's sitting position would be diverse. This poses a higher challenge to occupant injury protection during vehicle collisions. The main objective of the current study is to develop occupant injury prediction models for autonomous vehicles that can be used to predict the injury severity of occupants in different seat orientations and sitting positions. The first step is to establish an occupant crash model database with different seat orientations. It is used to simulate the occupant crash injury database of an autonomous vehicle, considering seat rotation and the back inclination angle. The second step is to establish a pre‐training occupant injury prediction model based on the existing database and then train the autonomous vehicle occupant injury prediction model using an in‐house database based on the transfer learning method. Occupant injury prediction models achieve good accuracy (82.8% on the numerical database and 62.9% on the real verification database) and shorter computational time (4.86 ± 0.33 ms) on the prediction tasks. Finally, the influence of the model input variables is analyzed. This study demonstrates the feasibility of using a small‐sample database based on transfer learning for occupant injury prediction in autonomous vehicles.
Suggested Citation
Na Yang & Dongwei Liu & Qi Liu & Zhiwei Li & Tao Liu & Jianfeng Wang & Ze Xu, 2025.
"Research on occupant injury severity prediction of autonomous vehicles based on transfer learning,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 79-92, January.
Handle:
RePEc:wly:jforec:v:44:y:2025:i:1:p:79-92
DOI: 10.1002/for.3186
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:1:p:79-92. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.