IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v39y2020i1p37-46.html
   My bibliography  Save this article

Forecasting inflation using univariate continuous‐time stochastic models

Author

Listed:
  • Kevin Fergusson

Abstract

In this paper we investigate the applicability of several continuous‐time stochastic models to forecasting inflation rates with horizons out to 20 years. While the models are well known, new methods of parameter estimation and forecasts are supplied, leading to rigorous testing of out‐of‐sample inflation forecasting at short and long time horizons. Using US consumer price index data we find that over longer forecasting horizons—that is, those beyond 5 years—the log‐normal index model having Ornstein–Uhlenbeck drift rate provides the best forecasts.

Suggested Citation

  • Kevin Fergusson, 2020. "Forecasting inflation using univariate continuous‐time stochastic models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 37-46, January.
  • Handle: RePEc:wly:jforec:v:39:y:2020:i:1:p:37-46
    DOI: 10.1002/for.2603
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2603
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Carl Chiarella & Chih-Ying Hsiao & Willi Semmler, 2007. "Intertemporal Investment Strategies Under Inflation Risk," Research Paper Series 192, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    5. Robert Jarrow & Yildiray Yildirim, 2008. "Pricing Treasury Inflation Protected Securities and Related Derivatives using an HJM Model," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 16, pages 349-370, World Scientific Publishing Co. Pte. Ltd..
    6. Bergstrom, A.R., 1984. "Continuous time stochastic models and issues of aggregation over time," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 20, pages 1145-1212, Elsevier.
    7. K. Fergusson & E. Platen, 2015. "Application Of Maximum Likelihood Estimation To Stochastic Short Rate Models," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-26, December.
    8. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    9. K. Fergusson, 2017. "Explicit Formulae For Parameters Of Stochastic Models Of A Discounted Equity Index Using Maximum Likelihood Estimation With Applications," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 1-31, June.
    10. Brent Meyer & Mehmet Pasaogullari, 2010. "Simple ways to forecast inflation: what works best?," Economic Commentary, Federal Reserve Bank of Cleveland, issue Dec.
    11. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emma M. Iglesias & Garry D. A. Phillips, 2020. "Further Results on Pseudo‐Maximum Likelihood Estimation and Testing in the Constant Elasticity of Variance Continuous Time Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 357-364, March.
    2. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    3. Peter C.B.Phillips & Jun Yu, "undated". "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Working Papers CoFie-08-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    4. Li, Kai, 2019. "Portfolio selection with inflation-linked bonds and indexation lags," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    5. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    6. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    7. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    8. repec:uts:finphd:40 is not listed on IDEAS
    9. Emmanuel Coffie, 2022. "Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process," Papers 2205.00634, arXiv.org.
    10. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    11. Tim Leung & Hyungbin Park, 2017. "LONG-TERM GROWTH RATE OF EXPECTED UTILITY FOR LEVERAGED ETFs: MARTINGALE EXTRACTION APPROACH," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-33, September.
    12. repec:wyi:journl:002108 is not listed on IDEAS
    13. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    14. Farid Mkouar & Jean-Luc Prigent, 2014. "Long-Term Investment with Stochastic Interest and Inflation Rates Incompleteness and Compensating Variation," Working Papers 2014-301, Department of Research, Ipag Business School.
    15. Nowman, K. Ben, 2002. "The volatility of Japanese interest rates: evidence for Certificate of Deposit and Gensaki rates," International Review of Financial Analysis, Elsevier, vol. 11(1), pages 29-38.
    16. Xu, Ke-Li, 2010. "Reweighted Functional Estimation Of Diffusion Models," Econometric Theory, Cambridge University Press, vol. 26(2), pages 541-563, April.
    17. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
    18. Byers, S. L. & Nowman, K. B., 1998. "Forecasting U.K. and U.S. interest rates using continuous time term structure models," International Review of Financial Analysis, Elsevier, vol. 7(3), pages 191-206.
    19. Bali, Turan G., 2003. "Modeling the stochastic behavior of short-term interest rates: Pricing implications for discount bonds," Journal of Banking & Finance, Elsevier, vol. 27(2), pages 201-228, February.
    20. repec:wyi:journl:002142 is not listed on IDEAS
    21. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    22. Song, Zhaogang, 2011. "A martingale approach for testing diffusion models based on infinitesimal operator," Journal of Econometrics, Elsevier, vol. 162(2), pages 189-212, June.
    23. Kristensen, Dennis, 2004. "Estimation in two classes of semiparametric diffusion models," LSE Research Online Documents on Economics 24739, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:39:y:2020:i:1:p:37-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.