IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v38y2019i3p222-235.html
   My bibliography  Save this article

Predictive likelihood for coherent forecasting of count time series

Author

Listed:
  • Siuli Mukhopadhyay
  • Vurukonda Sathish

Abstract

A new forecasting method based on the concept of the profile predictive likelihood function is proposed for discrete‐valued processes. In particular, generalized autoregressive moving average (GARMA) models for Poisson distributed data are explored in detail. Highest density regions are used to construct forecasting regions. The proposed forecast estimates and regions are coherent. Large‐sample results are derived for the forecasting distribution. Numerical studies using simulations and two real data sets are used to establish the performance of the proposed forecasting method. Robustness of the proposed method to possible misspecifications in the model is also studied.

Suggested Citation

  • Siuli Mukhopadhyay & Vurukonda Sathish, 2019. "Predictive likelihood for coherent forecasting of count time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 222-235, April.
  • Handle: RePEc:wly:jforec:v:38:y:2019:i:3:p:222-235
    DOI: 10.1002/for.2566
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2566
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:38:y:2019:i:3:p:222-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.