IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v38y2019i2p92-105.html
   My bibliography  Save this article

Hybridizing kernel‐based fuzzy c‐means with hierarchical selective neural network ensemble model for business failure prediction

Author

Listed:
  • Jiaming Liu
  • Chong Wu

Abstract

More and more ensemble models are used to forecast business failure. It is generally known that the performance of an ensemble relies heavily on the diversity between each base classifier. To achieve diversity, this study uses kernel‐based fuzzy c‐means (KFCM) to organize firm samples and designs a hierarchical selective ensemble model for business failure prediction (BFP). First, three KFCM methods—Gaussian KFCM (GFCM), polynomial KFCM (PFCM), and Hyper‐tangent KFCM (HFCM)—are employed to partition the financial data set into three data sets. A neural network (NN) is then adopted as a basis classifier for BFP, and three sets, which are derived from three KFCM methods, are used to build three classifier pools. Next, classifiers are fused by the two‐layer hierarchical selective ensemble method. In the first layer, classifiers are ranked based on their prediction accuracy. The stepwise forward selection method is employed to selectively integrate classifiers according to their accuracy. In the second layer, three selective ensembles in the first layer are integrated again to acquire the final verdict. This study employs financial data from Chinese listed companies to conduct empirical research, and makes a comparative analysis with other ensemble models and all its component models. It is the conclusion that the two‐layer hierarchical selective ensemble is good at forecasting business failure.

Suggested Citation

  • Jiaming Liu & Chong Wu, 2019. "Hybridizing kernel‐based fuzzy c‐means with hierarchical selective neural network ensemble model for business failure prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(2), pages 92-105, March.
  • Handle: RePEc:wly:jforec:v:38:y:2019:i:2:p:92-105
    DOI: 10.1002/for.2561
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2561
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Pavlicko & Marek Durica & Jaroslav Mazanec, 2021. "Ensemble Model of the Financial Distress Prediction in Visegrad Group Countries," Mathematics, MDPI, vol. 9(16), pages 1-26, August.
    2. Ünal, Cemre & Ceasu, Ioana, 2019. "A Machine Learning Approach Towards Startup Success Prediction," IRTG 1792 Discussion Papers 2019-022, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:38:y:2019:i:2:p:92-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.