IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v37y2018i7p767-780.html
   My bibliography  Save this article

Forecasting accident frequency of an urban road network: A comparison of four artificial neural network techniques

Author

Listed:
  • Hamid Behbahani
  • Amir Mohamadian Amiri
  • Reza Imaninasab
  • Meysam Alizamir

Abstract

Considerable effort has been made to determine which of the most common prediction modeling techniques performs best, based on crash‐related data. Accordingly, the present study aims to evaluate how crashes in the urban road network are affected by contributing factors. Therefore, in the present paper, a comparison has been done among four artificial neural network (ANN) techniques: extreme learning machine (ELM), probabilistic neural network (PNN), radial basis function (RBF), and multilayer perceptron (MLP). According to the measures used, including Nash–Sutcliffe (NS), mean absolute error (MAE), and root mean square error (RMSE), ELM was found to be the most successful approach in addressing the objectives defined in the present study. Moreover, not only is ELM the fastest algorithm due to its different structure, but it has also led to the most accurate prediction. In the end, the RReliefF algorithm was utilized to find the importance of variables used, including V/C, speed, vehicle kilometer traveled (VKT), roadway width, existence of median, and allowable/not‐allowable parking. It was proved that VKT is the most influential variable in accident occurrence, followed by two traffic flow characteristics: V/C and speed.

Suggested Citation

  • Hamid Behbahani & Amir Mohamadian Amiri & Reza Imaninasab & Meysam Alizamir, 2018. "Forecasting accident frequency of an urban road network: A comparison of four artificial neural network techniques," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(7), pages 767-780, November.
  • Handle: RePEc:wly:jforec:v:37:y:2018:i:7:p:767-780
    DOI: 10.1002/for.2542
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2542
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gholamreza Shiran & Reza Imaninasab & Razieh Khayamim, 2021. "Crash Severity Analysis of Highways Based on Multinomial Logistic Regression Model, Decision Tree Techniques, and Artificial Neural Network: A Modeling Comparison," Sustainability, MDPI, vol. 13(10), pages 1-23, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:37:y:2018:i:7:p:767-780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.