IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v37y2018i3p259-268.html
   My bibliography  Save this article

Robust forecast aggregation: Fourier L2E regression

Author

Listed:
  • Daniel Cross
  • Jaime Ramos
  • Barbara Mellers
  • Philip E. Tetlock
  • David W. Scott

Abstract

The Good Judgment Team led by psychologists P. Tetlock and B. Mellers of the University of Pennsylvania was the most successful of five research projects sponsored through 2015 by the Intelligence Advanced Research Projects Activity to develop improved group forecast aggregation algorithms. Each team had at least 10 algorithms under continuous development and evaluation over the 4†year project. The mean Brier score was used to rank the algorithms on approximately 130 questions concerning categorical geopolitical events each year. An algorithm would return aggregate probabilities for each question based on the probabilities provided per question by thousands of individuals, who had been recruited by the Good Judgment Team. This paper summarizes the theorized basis and implementation of one of the two most accurate algorithms at the conclusion of the Good Judgment Project. The algorithm incorporated a number of pre†and postprocessing steps, and relied upon a minimum distance robust regression method called L2E. The algorithm was just edged out by a variation of logistic regression, which has been described elsewhere. Work since the official conclusion of the project has led to an even smaller gap.

Suggested Citation

  • Daniel Cross & Jaime Ramos & Barbara Mellers & Philip E. Tetlock & David W. Scott, 2018. "Robust forecast aggregation: Fourier L2E regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 259-268, April.
  • Handle: RePEc:wly:jforec:v:37:y:2018:i:3:p:259-268
    DOI: 10.1002/for.2489
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2489
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satopää, Ville A. & Salikhov, Marat & Tetlock, Philip E. & Mellers, Barbara, 2023. "Decomposing the effects of crowd-wisdom aggregators: The bias–information–noise (BIN) model," International Journal of Forecasting, Elsevier, vol. 39(1), pages 470-485.
    2. Karvetski, Christopher W. & Meinel, Carolyn & Maxwell, Daniel T. & Lu, Yunzi & Mellers, Barbara A. & Tetlock, Philip E., 2022. "What do forecasting rationales reveal about thinking patterns of top geopolitical forecasters?," International Journal of Forecasting, Elsevier, vol. 38(2), pages 688-704.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:37:y:2018:i:3:p:259-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.