IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v37y2018i2p151-169.html
   My bibliography  Save this article

Short†term salmon price forecasting

Author

Listed:
  • Daumantas Bloznelis

Abstract

This study establishes a benchmark for short†term salmon price forecasting. The weekly spot price of Norwegian farmed Atlantic salmon is predicted 1–5 weeks ahead using data from 2007 to 2014. Sixteen alternative forecasting methods are considered, ranging from classical time series models to customized machine learning techniques to salmon futures prices. The best predictions are delivered by k†nearest neighbors method for 1 week ahead; vector error correction model estimated using elastic net regularization for 2 and 3 weeks ahead; and futures prices for 4 and 5 weeks ahead. While the nominal gains in forecast accuracy over a naïve benchmark are small, the economic value of the forecasts is considerable. Using a simple trading strategy for timing the sales based on price forecasts could increase the net profit of a salmon farmer by around 7%.

Suggested Citation

  • Daumantas Bloznelis, 2018. "Short†term salmon price forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(2), pages 151-169, March.
  • Handle: RePEc:wly:jforec:v:37:y:2018:i:2:p:151-169
    DOI: 10.1002/for.2482
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2482
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    2. Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:37:y:2018:i:2:p:151-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.