IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v36y2017i8p956-973.html
   My bibliography  Save this article

Forecasting the Daily Time‐Varying Beta of European Banks During the Crisis Period: Comparison Between GARCH Models and the Kalman Filter

Author

Listed:
  • Yuanyuan Zhang
  • Taufiq Choudhry

Abstract

This intention of this paper is to empirically forecast the daily betas of a few European banks by means of four generalized autoregressive conditional heteroscedasticity (GARCH) models and the Kalman filter method during the pre‐global financial crisis period and the crisis period. The four GARCH models employed are BEKK GARCH, DCC GARCH, DCC‐MIDAS GARCH and Gaussian‐copula GARCH. The data consist of daily stock prices from 2001 to 2013 from two large banks each from Austria, Belgium, Greece, Holland, Ireland, Italy, Portugal and Spain. We apply the rolling forecasting method and the model confidence sets (MCS) to compare the daily forecasting ability of the five models during one month of the pre‐crisis (January 2007) and the crisis (January 2013) periods. Based on the MCS results, the BEKK proves the best model in the January 2007 period, and the Kalman filter overly outperforms the other models during the January 2013 period. Results have implications regarding the choice of model during different periods by practitioners and academics. Copyright © 2016 John Wiley & Sons, Ltd.

Suggested Citation

  • Yuanyuan Zhang & Taufiq Choudhry, 2017. "Forecasting the Daily Time‐Varying Beta of European Banks During the Crisis Period: Comparison Between GARCH Models and the Kalman Filter," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(8), pages 956-973, December.
  • Handle: RePEc:wly:jforec:v:36:y:2017:i:8:p:956-973
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousaf, Imran & Yarovaya, Larisa, 2022. "Static and dynamic connectedness between NFTs, Defi and other assets: Portfolio implication," Global Finance Journal, Elsevier, vol. 53(C).
    2. Wang, Ze & Gao, Xiangyun & An, Haizhong & Tang, Renwu & Sun, Qingru, 2020. "Identifying influential energy stocks based on spillover network," International Review of Financial Analysis, Elsevier, vol. 68(C).
    3. Zhang, Weiping & Zhuang, Xintian & Wu, Dongmei, 2020. "Spatial connectedness of volatility spillovers in G20 stock markets: Based on block models analysis," Finance Research Letters, Elsevier, vol. 34(C).
    4. Yousaf, Imran & Arfaoui, Nadia & Gubareva, Mariya, 2024. "Spillovers and hedging effectiveness between oil and US equity sectors: Evidence from the COVID pre- and post-vaccination phases," Research in International Business and Finance, Elsevier, vol. 69(C).
    5. Yousaf, Imran & Yarovaya, Larisa, 2022. "Spillovers between the Islamic gold-backed cryptocurrencies and equity markets during the COVID-19: A sectorial analysis," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).
    6. Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:36:y:2017:i:8:p:956-973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.