IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v36y2017i6p651-679.html
   My bibliography  Save this article

Mincer–Zarnowitz quantile and expectile regressions for forecast evaluations under aysmmetric loss functions

Author

Listed:
  • Kemal Guler
  • Pin T. Ng
  • Zhijie Xiao

Abstract

No abstract is available for this item.

Suggested Citation

  • Kemal Guler & Pin T. Ng & Zhijie Xiao, 2017. "Mincer–Zarnowitz quantile and expectile regressions for forecast evaluations under aysmmetric loss functions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(6), pages 651-679, September.
  • Handle: RePEc:wly:jforec:v:36:y:2017:i:6:p:651-679
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malte Knuppel & Fabian Kruger & Marc-Oliver Pohle, 2022. "Score-based calibration testing for multivariate forecast distributions," Papers 2211.16362, arXiv.org, revised Dec 2023.
    2. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    3. Sebastian Bayer & Timo Dimitriadis, 2018. "Regression Based Expected Shortfall Backtesting," Papers 1801.04112, arXiv.org, revised Sep 2019.
    4. Sebastian Bayer & Timo Dimitriadis, 2022. "Regression-Based Expected Shortfall Backtesting [Backtesting Expected Shortfall]," Journal of Financial Econometrics, Oxford University Press, vol. 20(3), pages 437-471.
    5. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:36:y:2017:i:6:p:651-679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.