IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v36y2017i1p1-15.html
   My bibliography  Save this article

Forecasting with Micro Panels: The Case of Health Care Costs

Author

Listed:
  • Denzil G. Fiebig
  • Meliyanni Johar

Abstract

Micro panels characterized by large numbers of individuals observed over a short time period provide a rich source of information, but as yet there is only limited experience in using such data for forecasting. Existing simulation evidence supports the use of a fixed‐effects approach when forecasting but it is not based on a truly micro panel set‐up. In this study, we exploit the linkage of a representative survey of more than 250,000 Australians aged 45 and over to 4 years of hospital, medical and pharmaceutical records. The availability of panel health cost data allows the use of predictors based on fixed‐effects estimates designed to guard against possible omitted variable biases associated with unobservable individual specific effects. We demonstrate the preference towards fixed‐effects‐based predictors is unlikely to hold in many practical situations, including our models of health care costs. Simulation evidence with a micro panel set‐up adds support and additional insights to the results obtained in the application. These results are supportive of the use of the ordinary least squares predictor in a wide range of circumstances. Copyright © 2016 John Wiley & Sons, Ltd.

Suggested Citation

  • Denzil G. Fiebig & Meliyanni Johar, 2017. "Forecasting with Micro Panels: The Case of Health Care Costs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(1), pages 1-15, January.
  • Handle: RePEc:wly:jforec:v:36:y:2017:i:1:p:1-15
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Swierkowski & Adrian Barnett, 2018. "Identification of hospital cost drivers using sparse group lasso," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:36:y:2017:i:1:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.